Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 10 - Projective Geometry

1. Show that three points in a projective space of dimension at least 2 lie on a projective plane which is unique unless the points are collinear.

Solution: Let the three points be $[v 0],[v 1],[v 2]$ and contemplate the span U of the v_{i}. Then U is at most 3 -dimensional. If $\operatorname{dim}(U)=3$ then our points lie in the projective plane $\mathbb{P}(U)$ and if $\mathbb{P}(W)$ is another such projective plane then $U \subset W$ and $\operatorname{dim}(U)=\operatorname{dim}(W)$ hence $U=W$ so the plane is unique. If $\operatorname{dim}(U) \leq 2$ then the three points are collinear since the v_{i} lie in some 2-dimensional subspace (which we could take to be U if $\operatorname{dim}(U)=2$). Now take any 3 -dimensional subspace W containing the v_{i} (there are many of these) to see that our points lie in a plane $\mathbb{P}(W)$.
2. Let P, P^{\prime} be distinct projective planes in a 3 -dimensional projective space. Show that $P \cap P^{\prime}$ is a projective line
Solution: Let $P=\mathbb{P}(U), P^{\prime}=\mathbb{P}\left(U^{\prime}\right)$ be planes in the 3-dimensional projective space $\mathbb{P}(V)$. Thus $U, U^{\prime} \subset V$ are vector spaces with $\operatorname{dim} V=4$ and $\operatorname{dim}(U)=\operatorname{dim}\left(U^{\prime}\right)=3$. Then

$$
4 \geq \operatorname{dim}\left(U+U^{\prime}\right)=\operatorname{dim} U+\operatorname{dim} U^{\prime}-\operatorname{dim}\left(U \cap U^{\prime}\right)=6-\operatorname{dim}\left(U \cap U^{\prime}\right)
$$

yielding $\operatorname{dim}\left(U \cap U^{\prime}\right) \geq 2$. On the other hand, $\operatorname{dim}\left(U \cap U^{\prime}\right) \leq \operatorname{dim} U=3$ with equality if and only if $U=U^{\prime}$ which cannot happen since P, P^{\prime} are distinct. Thus, $\operatorname{dim}\left(U \cap U^{\prime}\right)=2$ so that $P \cap P^{\prime}=\mathbb{P}\left(U \cap U^{\prime}\right)$ is a projective line.
3. Here is a "cheap proof" of Desargues Theorem in the case when $\operatorname{dim} \mathbb{P}(V) \geq 3$ and the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ lie in different planes P and P^{\prime} : (i) Prove that $P, A, A^{\prime}, B, B^{\prime}, C, C^{\prime}$ lie in a 3 -dimensional projective subspace (so that we can restrict attention to that subspace and assume $\operatorname{dim} \mathbb{P}(V)=3$). (ii) Show that the intersections Q, R, S all lie in $P \cap P^{\prime}$ which is a line by the previous question.
Solution: (i) $P, A, A^{\prime}, B, B^{\prime}$ all lie in the plane $\pi=\mathbb{P}(W)$ containing the lines $A A^{\prime}$ and $B B^{\prime}$. The remaining points lie on the line $C C^{\prime}=\mathbb{P}(U)$ which intersects this plane exactly at the point P (otherwise $C C^{\prime}$ lies in the plane which then contains both triangles contrary to assumption). The join of this line and plane is then $\mathbb{P}(U+W)$ which is 3 -dimensional since $\operatorname{dim}(U+W)=2+3-1=4$.
(ii) Consider $Q=B C \cap B^{\prime} C^{\prime}$: both B and C lie in the plane P whence the line $B C$ lies in P also. Similarly, $B^{\prime} C^{\prime}$ lies in P^{\prime} so that $Q=B C \cap B^{\prime} C^{\prime}$ lies in $P \cap P^{\prime}$. The same argument shows that R and S also lie on the line $P \cap P^{\prime}$.
4. Let $E_{1}=\mathbb{P}\left(U_{1}\right)$ and $E_{2}=\mathbb{P}\left(U_{2}\right)$ be two hyperplanes in a projective space $\mathbb{P}(V)$ (for example, two lines in a projective plane) and let $W \operatorname{in} \mathbb{P}(V)$ be a point not in E_{1} or E_{2}. Then the central projection from E_{1} to E_{2} with center W is the map $\hat{f}: E_{1} \rightarrow E_{2}$ that maps a point $A \in E_{1}$ to the intersection of E_{2} with the line through W and A. Show that the central projection \hat{f} is a projective transformation $E_{1} \rightarrow E_{2}$.
Solution: We have to show that \hat{f} comes from an invertible linear map $f: U_{1} \rightarrow U_{2}$. Note that W, as point in $\mathbb{P}(V)$, is a 1 -dimensional subspace of V. Since it does not lie in E_{2} one has, $W \cap U_{2}=\{0\}$. This means that V is the direct sum $V=W \oplus U_{2}$, and there are two linear maps $p_{W}: V \rightarrow W$ and $p_{U_{2}}: V \rightarrow U_{2}$ (the projections onto W and $\left.U_{2}\right)$ such that for any $v \in V, p_{W}(v)$ and $p_{U_{2}}(v)$ are the unique vectors in W and U_{2} such that $v=p_{W}(v)+p_{U_{2}}(v)$. Claim: The central projection \hat{f} comes from the linear map $p_{U_{2}} \mid U_{1}$, the restriction of $p_{U_{2}}$ to U_{1}. To see this, let $a \in U_{1}$ be a representative vector of $A \in E_{1}$. Then $p_{U_{2}}(a) \neq 0$, because $p_{U_{2}}(a)=0$ would mean $a \in W$, but $U_{1} \cap W=\{0\}$ because by assumption E_{1} does not contain W. This shows that $p_{U_{2}} \mid U_{1}$ is invertible, because it an injective linear map $U_{1} \rightarrow U_{2}$ and $\operatorname{dim} U_{1}=\operatorname{dim} U_{2}$. Now $p_{U_{2}}(a) \in U_{2}$,so $\left[p_{U_{2}}(a)\right] \in E_{2}$. Also $a=p_{W}(a)+p_{U_{2}}(a)$,or $p_{U_{2}}(a)=a-p_{W}(a)$, so $p_{U_{2}}(a) \in[a]+W$, which means that $\left[p_{U_{2}}(a)\right]$ is in the (projective) line through $A \in \mathbb{P}(V)$ and $W \in \mathbb{P}(V)$. Hence $\left[p_{U_{2}}(a)\right]$ is the intersection of E_{2} with the line through W and A, so it is the image of A under the central projection.
5. Let $\mathbb{P}(V)$ and $\mathbb{P}(W)$ be two n-dimensional projective spaces and suppose $A_{1}, \ldots, A_{n+2} \in$ $\mathbb{P}(V)$ and $B_{1}, \ldots, B_{n+2} \in \mathbb{P}(W)$ are in general position. Then there exists a unique projective transformation $\hat{f}: \mathbb{P}(V) \rightarrow \mathbb{P}(W)$ with $\hat{f}\left(A_{i}\right)=B_{i}$ for $i=1, \ldots, n+2$.
Solution: Existence: By a lemma we proved in class, we may choose representative vectors a_{1}, \ldots, a_{n+2} for A_{1}, \ldots, A_{n+2} and b_{1}, \ldots, b_{n+2} for B_{1}, \ldots, B_{n+2} such that $\sum_{i=1}^{n+1} a_{i}=a_{n+2}$ and $\sum_{i=1}^{n+1} b_{i}=b_{n+2}$. Also by the general position assumption, a_{1}, \ldots, a_{n+1} and b_{1}, \ldots, b_{n+1} are bases of V and W, respectively. Hence there is an invertible linear map $f: V \rightarrow W$ with $f\left(a_{i}\right)=b_{i}$ for $i=1, \ldots, n+1$. But then also

$$
f\left(a_{n+2}\right)=f\left(\sum_{i=1}^{n+1} a_{i}\right)=\sum_{i=1}^{n+1} f\left(a_{i}\right)=\sum_{i=1}^{n+1} b_{i}=b_{n+2}
$$

So f maps the 1-dimensional subspaces $A_{i}=\left[a_{i}\right] \subset V$ to $B_{i}=\left[b_{i}\right] \subset W$ for $i=$ $1, \ldots, n+2$.

Uniqueness: Let $g: V \rightarrow W$ be another invertible linear map with $g\left(a_{i}\right) \in B_{i}$ for $i=1, \ldots, n+2$. Then $\widetilde{b}_{i}=g\left(a_{i}\right)$ would be another set of representative vectors for the B_{i} with

$$
\widetilde{b}_{n+2}=g\left(a_{n+2}\right)=g\left(\sum_{i=1}^{n+1} a_{i}=\sum_{i=1}^{n+1} g\left(a_{i}\right)=\sum_{i=1}^{n+1} \widetilde{b}_{i}\right.
$$

By the uniqueness part of the lemma mentioned above, this implies $\widetilde{b}_{i}=\lambda b_{i}$ for some $\lambda \neq 0$, so $g=\lambda f$, and g and f induce the same projective transformation $\mathbb{P}(V) \rightarrow \mathbb{P}(W)$.
6. Let L_{1}, L_{2} be distinct projective lines in a projective plane that intersect at a point A. Let $\tau: L_{1} \rightarrow L_{2}$ be a projective transformation such that $\tau A=A$. Show that τ is a projection from some point of the plane. Hint: Choose B, C on L_{1} distinct from A and let $B^{\prime}=\tau B, C^{\prime}=\tau C$. If τ was a projection, where would its centre have to lie?
Solution: Let $P=B B^{\prime} \cap C C^{\prime}$ and contemplate the projection $\tau_{1}: L_{1} \rightarrow L_{2}$ with centre P. By construction, we have $\tau_{1} 1(B)=B^{\prime}$ and $\tau_{1}(C)=C^{\prime}$ but, also, $\tau_{1}(A)=A$. Thus τ and τ_{1} agree on three distinct points of L_{1} (thus three points in general position) and so agree everywhere: $\tau=\tau_{1}$ so that τ is a projection.
7. Let L_{1} and L_{2} be distinct projective lines in a projective plane and $\tau: L_{1} \rightarrow L_{2}$ a projective transformation. We are going to show that τ is a composition of two projections. Let A, B, C be distinct points on L_{1} and let $A^{\prime}=\tau A, B^{\prime}=\tau B$, and $C^{\prime}=\tau C$. Without loss of generality, assume that neither A or A^{\prime} are in $L_{1} \cap L_{2}$. Set $P=A B^{\prime} \cap A^{\prime} B, Q=A C^{\prime} \cap A^{\prime} C$ and let L^{\prime} be the line $P Q$. Let $\tau_{1}: L_{1} \rightarrow L^{\prime}$ be the projection with centre A^{\prime} and $\tau_{2}: L^{\prime} \rightarrow L_{2}$ be the projection with centre A. (a) Prove that $\tau=\tau_{2} \circ \tau_{1}$. Hint: What does $\tau_{2} \circ \tau_{1}$ do to A, B, C ?
Solution: Let $R=A A^{\prime} \cap L^{\prime}$. Then $\tau_{1}(A)=R, \tau_{1}(B)=P$ and $\tau_{1}(C)=Q$. Moreover, $\tau_{2}(R)=A^{\prime}, \tau_{2}(P)=B^{\prime}$ and $\tau_{2}(Q)=C^{\prime}$. Thus τ and $\tau_{2} \circ \tau_{1}$ agree on the three points A, B, C in general position and so everywhere.
8. (*) Prove Brianchon's Theorem: Let the sides $A B^{\prime}, B^{\prime} C, C A^{\prime}, A^{\prime} B, B C^{\prime}, C^{\prime} A$ of a hexagon pass alternately through two (different) points P and Q in a projective plane. Then the lines joining opposite vertices $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent. Hint: choose a basis so that P, C, Q, C^{\prime} have homogeneous coordinates $[1,0,0],[0,1,0],[0,0,1],[1,1,1]$.

