
Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 10 - Projective Geometry

1. Show that three points in a projective space of dimension at least 2 lie on a projective

plane which is unique unless the points are collinear.

Solution: Let the three points be [v0], [v1], [v2] and contemplate the span U of the

vi. Then U is at most 3-dimensional. If dim(U) = 3 then our points lie in the

projective plane P(U) and if P(W ) is another such projective plane then U ⊂ W and

dim(U) = dim(W ) hence U = W so the plane is unique. If dim(U) ≤ 2 then the three

points are collinear since the vi lie in some 2-dimensional subspace (which we could

take to be U if dim(U) = 2). Now take any 3-dimensional subspace W containing the

vi (there are many of these) to see that our points lie in a plane P(W ).

2. Let P, P ′ be distinct projective planes in a 3-dimensional projective space. Show that

P ∩ P ′ is a projective line

Solution: Let P = P(U), P ′ = P(U ′) be planes in the 3-dimensional projective space

P(V ). Thus U,U ′ ⊂ V are vector spaces with dimV = 4 and dim(U) = dim(U ′) = 3.

Then

4 ≥ dim(U + U ′) = dimU + dimU ′ − dim(U ∩ U ′) = 6 − dim(U ∩ U ′),

yielding dim(U ∩ U ′) ≥ 2. On the other hand, dim(U ∩ U ′) ≤ dimU = 3 with

equality if and only if U = U ′ which cannot happen since P, P ′ are distinct. Thus,

dim(U ∩ U ′) = 2 so that P ∩ P ′ = P(U ∩ U ′) is a projective line.

3. Here is a “cheap proof” of Desargues Theorem in the case when dimP(V ) ≥ 3 and

the triangles ABC and A′B′C ′ lie in different planes P and P ′: (i) Prove that

P,A,A′, B,B′, C, C ′ lie in a 3-dimensional projective subspace (so that we can re-

strict attention to that subspace and assume dimP(V ) = 3). (ii) Show that the

intersections Q,R, S all lie in P ∩ P ′ which is a line by the previous question.

Solution: (i) P,A,A′, B,B′ all lie in the plane π = P(W ) containing the lines AA′ and

BB′. The remaining points lie on the line CC ′ = P(U) which intersects this plane

exactly at the point P (otherwise CC ′ lies in the plane which then contains both

triangles contrary to assumption). The join of this line and plane is thenP(U + W )

which is 3-dimensional since dim(U + W ) = 2 + 3 − 1 = 4.

(ii) Consider Q = BC ∩ B ′C ′: both B and C lie in the plane P whence the line BC

lies in P also. Similarly, B ′C ′ lies in P ′ so that Q = BC ∩ B ′C ′ lies in P ∩ P ′. The

same argument shows that R and S also lie on the line P ∩ P ′.
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4. Let E1 = P(U1) and E2 = P(U2) be two hyperplanes in a projective space P(V ) (for

example, two lines in a projective plane) and let W inP(V ) be a point not in E1 or

E2. Then the central projection from E1 to E2 with center W is the map f̂ : E1 → E2

that maps a point A ∈ E1 to the intersection of E2 with the line through W and A.

Show that the central projection f̂ is a projective transformation E1 → E2.

Solution: We have to show that f̂ comes from an invertible linear map f : U1 → U2.

Note that W , as point in P(V ), is a 1-dimensional subspace of V . Since it does not lie

in E2 one has, W ∩U2 = {0}. This means that V is the direct sum V = W ⊕U2, and

there are two linear maps pW : V → W and pU2
: V → U2 (the projections onto W and

U2) such that for any v ∈ V , pW (v) and pU2
(v) are the unique vectors in W and U2

such that v = pW (v)+ pU2
(v). Claim: The central projection f̂ comes from the linear

map pU2
|U1 , the restriction of pU2

to U1. To see this, let a ∈ U1 be a representative

vector of A ∈ E1. Then pU2
(a) 6= 0, because pU2

(a) = 0 would mean a ∈ W , but

U1 ∩ W = {0} because by assumption E1 does not contain W . This shows that

pU2
|U1 is invertible, because it an injective linear map U1 → U2 and dimU1 = dimU2.

Now pU2
(a) ∈ U2,so [pU2

(a)] ∈ E2. Also a = pW (a) + pU2
(a),or pU2

(a) = a − pW (a),

so pU2
(a) ∈ [a] + W , which means that[pU2

(a)] is in the (projective) line through

A ∈ P(V ) and W ∈ P(V ). Hence [pU2
(a)] is the intersection of E2 with the line

through W and A, so it is the image of A under the central projection.

5. Let P(V ) and P(W ) be two n-dimensional projective spaces and suppose A1, . . . , An+2 ∈

P(V ) and B1, . . . , Bn+2 ∈ P(W ) are in general position. Then there exists a unique

projective transformation f̂ : P(V ) → P(W ) with f̂(Ai) = Bi for i = 1, . . . , n + 2.

Solution: Existence: By a lemma we proved in class, we may choose representa-

tive vectors a1, . . . , an+2 for A1, . . . , An+2 and b1, . . . , bn+2 for B1, . . . , Bn+2 such that∑
n+1

i=1
ai = an+2 and

∑
n+1

i=1
bi = bn+2. Also by the general position assumption,

a1, . . . , an+1 and b1, . . . , bn+1 are bases of V and W , respectively. Hence there is an

invertible linear map f : V → W with f(ai) = bi for i = 1, . . . , n + 1. But then also

f(an+2) = f(

n+1∑

i=1

ai) =

n+1∑

i=1

f(ai) =

n+1∑

i=1

bi = bn+2

So f maps the 1-dimensional subspaces Ai = [ai] ⊂ V to Bi = [bi] ⊂ W for i =

1, . . . , n + 2.

Uniqueness: Let g : V → W be another invertible linear map with g(ai) ∈ Bi for

i = 1, . . . , n + 2. Then b̃i = g(ai) would be another set of representative vectors for

the Bi with

b̃n+2 = g(an+2) = g(

n+1∑

i=1

ai =

n+1∑

i=1

g(ai) =

n+1∑

i=1

b̃i

By the uniqueness part of the lemma mentioned above, this implies b̃i = λbi for

some λ 6= 0, so g = λf , and g and f induce the same projective transformation

P(V ) → P(W ).
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6. Let L1, L2 be distinct projective lines in a projective plane that intersect at a point

A. Let τ : L1 → L2 be a projective transformation such that τA = A. Show that τ is

a projection from some point of the plane. Hint: Choose B,C on L1 distinct from A

and let B′ = τB, C ′ = τC. If τ was a projection, where would its centre have to lie?

Solution: Let P = BB ′ ∩ CC ′ and contemplate the projection τ1 : L1 → L2 with

centre P . By construction, we have τ11(B) = B′ and τ1(C) = C ′ but, also, τ1(A) = A.

Thus τ and τ1 agree on three distinct points of L1 (thus three points in general

position) and so agree everywhere: τ = τ1 so that τ is a projection.

7. Let L1 and L2 be distinct projective lines in a projective plane and τ : L1 → L2

a projective transformation. We are going to show that τ is a composition of two

projections. Let A,B,C be distinct points on L1 and let A′ = τA, B′ = τB, and

C ′ = τC. Without loss of generality, assume that neither A or A′ are in L1 ∩L2. Set

P = AB′ ∩ A′B, Q = AC ′ ∩ A′C and let L′ be the line PQ. Let τ1 : L1 → L′ be the

projection with centre A′ and τ2 : L′ → L2 be the projection with centre A. (a) Prove

that τ = τ2 ◦ τ1. Hint: What does τ2 ◦ τ1 do to A,B,C?

Solution: Let R = AA′∩L′. Then τ1(A) = R, τ1(B) = P and τ1(C) = Q. Moreover,

τ2(R) = A′, τ2(P ) = B′ and τ2(Q) = C ′. Thus τ and τ2 ◦ τ1 agree on the three points

A,B,C in general position and so everywhere.

8. (*) Prove Brianchon’s Theorem: Let the sides AB ′, B′C,CA′, A′B,BC ′, C ′A of a

hexagon pass alternately through two (different) points P and Q in a projective plane.

Then the lines joining opposite vertices AA′, BB′, CC ′ are concurrent. Hint: choose a

basis so that P,C,Q,C ′ have homogeneous coordinates [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1].
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