
Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 2 - Subgroups of Isometries and More

1. If G is a discrete subgroup of Iso(R), prove that G contains a translation T by a

minimum distance, and that every translation in G is a power of T .

Solution: If a subgroup of I(R) contained translations by arbitrarily small amounts

it would not be discrete. Hence there is a translation Tm by some smallest number

m. Then if there is a translation Tk by an amount which was not a multiple of m, we

could write k = am + r with |r| < |m| and Tr would also be in the subgroup, giving

a contradiction.

2. Prove that the group SO(3) is the group of all rotations about straight lines through

0 in R3. (hint: start with the fact that the determinant of a matrix is the product of

its eigenvalues, and deduce that at least one of them is +1.)

Solution: First note that for any matrix, the determinant is the product of the

eigenvalues. Next, any 3× 3 matrix has a real eigenvalue λ since the polynomial you

have to solve to find the eigenvalues is a cubic and any cubic has a real root. Since the

transformation is length preserving we must have λ = ±1. If the other eigenvalues are

real too, they must also be ±1 and since their product is ±1, one of the eigenvalues is

+1. If the other eigenvalues are non-real, they are complex conjugate to one another

and so their product is positive. So the real eigenvalue is +1. Thus in either case, the

transformation T has a fixed vector a with T (a) = +1a. (This is called an axis.) In

the plane perpendicular to a, vectors in this plane are mapped into this plane (since

angles are preserved) and so the transformation acts like an element of SO(2) and it

is therefore rotation by some angle about the axis a.

3. Prove that an element of the orthogonal group O(3) is either: a rotation about some

axis a, a reflection in some plane, or a rotation about an axis a followed by a reflection

in a plane perpendicular to a.

Solution: The proof is similar to the proof that SO(3) is the group of rotations in

R3. An element T of O(3) has an eigenvalue which is either ±1. If λ = +1 then T

has a fixed vector a and acts like an element of O(2) in the plane perpendicular to

a. If it acts as a rotation here, then we have a rotation in R3 (case (a)). If it acts

as a reflection in a vector b here, then we have a reflection in the plane containing a

and b (case (b)). If T has no positive eigenvalue then as above we have λ = −1 with

eigenvector c . As before T acts as an element of O(2) in the plane perpendicular to

c and it cannot act as a reflection here otherwise it would have a fixed vector (which

would be an eigenvector of +1). Hence it acts as a rotation in this plane, and we have

case (c).
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4. Write explicitly the group tables of C3 and D3.

Solution: See e.g., http://en.wikipedia.org/wiki/Dihedral group

5. Let G ⊂ Iso(R2) be a finite subgroup. Show that G has a fixed point: there exists

x ∈ R2 such that gx = x for all g ∈ G. Conclude that such a G is isomorphic to a

finite subgroup of O(2)

Solution: In class we showed that every isometry f of Rn is of the form x → Ax+ v,

where A ∈ O(n) and v ∈ Rn. This means that f is affine i.e.,

f(
∑

λixi) =
∑

λif(xi), provided that
∑

λi = 1

Next, given a finite group G ⊂ Iso(R2), choose any point x ∈ Rn, and define the

centroid of the orbit of x to be:

cx =
1

|G|
∑
T∈G

T (x)

Finally, use the fact that f is affine, and that G is a group to show that all of the

elements of G fix the point cx. (Note also that if G contains a translation or a glide

reflection then it can’t be finite).

6. Let G ⊂ Iso(R2) be a subgroup. A stabilizer Hx of a point x ∈ R2 is defined as

follows: Hx = {g ∈ G | gx = x}. Show that Hx is a subgroup of G. Show that if x

and y belong to the same orbit of G, the groups Hx and Hy are isomorphic. Assume

that G is discrete. Prove that each Hx is isomorphic to a finite subgroup of O(2).

7. Use the previous questions to complete the proof of the following theorem (by L. da

Vinci): The groups Cn and Dn, for some n ∈ N, are the only finite subgroups of

Iso(R2).

Solution: The proof of the theorem above was given in class (using the fact that a

finite group of isometries of R2 must have a fixed point).

8. Find a condition for the product of two rotations in Iso(R2) to be a translation.

Solution: If f1 = Rota,α and f2 = Rotb,β then f1 ◦ f2 is a translation if and only if

α = −β. To prove that, write f1 = Ta ◦L ◦T−a and f2 = Tb ◦L′ ◦T−b and note that if

αa = −β then L′ = L−1. Then f1◦f2 = a+L(−a+b+L−1(−b+x)) = a+L(b−a)−b+x

which is translation by the vector a+L(b−a)−b. In fact, the product of two rotations

centered on a and b with angles α and β is equal to a rotation centered on c, where

c is the intersection of: (i) the line ab rotated around a by −α/2 and (ii) the line ab

rotated around b by β/2. (so if α+ β = 0, then its a translation). This could also be

proven easily with analytic geometry.

9. Prove that the composite of a rotation about a point a and reflection RL in a line L

is a reflection if and only if a lies on the line L and a glide reflection otherwise.

Solution: The product of a rotation and reflection is either a reflection or a glide

reflection. If a ∈ L then there is a fixed point and we have a reflection. If a /∈ L, then
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write the rotation about a as the product of reflection in a line M parallel to L and

reflection in a line N . So f = RL ◦Rota = RL ◦RM ◦RN = Tb ◦RN where b is a vector

perpendicular to L. Thus since b is not perpendicular to N , this is a glide reflection.

10. If ABCD is a rectangle, show that GDA ◦GCD ◦GBC ◦GAB = Id, where GAB is the

he glide reflection along a (directed) line AB, and Id is the identity. Find a condition

that ensures that gliding around a general quadrilateral in the plane is the identity.

Solution: For the first part of the question, draw a picture, take a pair of axis a1 and

a2 at the point A (say a1 points ”north” and a2 ”east”) and look at their images under

the glides. For the second part of the question: The composite of a pair of glides is

a rotation (about some point) by twice the angle between them. So GBC ◦ GAB =

rotation by 2β and GDA ◦GCD = rotation by 2δ. So if 2β + 2δ ̸= 2π, the composite

cannot be the identity. If β+δ = π then, since A is fixed by the composite, we do have

the identity. This is the condition that the quadrilateral is cyclic (the four vertices lie

on a circle).

11. Prove that every isometry in Iso(R3) is either: a rotation (about any line in R3), a

translation, a screw translation (a rotation about some line followed by a translation

parallel to that line), a reflection (about any plane in R3), a glide reflection (reflection

in a plane Π followed by a translation parallel to Π), a rotatory reflection (a reflection

in a plane Π followed by a rotation about an axis perpendicular to Π).

3


