Non-Euclidean Geometry (spring 2011)

Exercise No. 2-Subgroups of Isometries and More

1. If G is a discrete subgroup of $\operatorname{Iso}(\mathbb{R})$, prove that G contains a translation T by a minimum distance, and that every translation in G is a power of T.
2. Prove that the group $S O(3)$ is the group of all rotations about straight lines through 0 in \mathbb{R}^{3}. (hint: start with the fact that the determinant of a matrix is the product of its eigenvalues, and deduce that at least one of them is +1 .)
3. Prove that an element of the orthogonal group $O(3)$ is either: a rotation about some axis a, a reflection in some plane, or a rotation about an axis a followed by a reflection in a plane perpendicular to a.
4. Write explicitly the group tables of C_{3} and D_{3}.
5. Let $G \subset \operatorname{Iso}\left(\mathbb{R}^{2}\right)$ be a finite subgroup. Show that G has a fixed point: there exists $x \in \mathbb{R}^{2}$ such that $g x=x$ for all $g \in G$. Conclude that such a G is isomorphic to a finite subgroup of $O(2)$
6. Let $G \subset \operatorname{Iso}\left(\mathbb{R}^{2}\right)$ be a subgroup. A stabilizer H_{x} of a point $x \in \mathbb{R}^{2}$ is defined as follows: $H_{x}=\{g \in G \mid g x=x\}$. Show that H_{x} is a subgroup of G. Show that if x and y belong to the same orbit of G, the groups H_{x} and H_{y} are isomorphic. Assume that G is discrete. Prove that each H_{x} is isomorphic to a finite subgroup of $O(2)$.
7. Use the previous questions to complete the proof of the following theorem (by L. da Vinci): The groups C_{n} and D_{n}, for some $n \in \mathbb{N}$, are the only finite subgroups of $\operatorname{Iso}\left(\mathbb{R}^{2}\right)$.
8. Find a condition for the product of two rotations in $\operatorname{Iso}\left(\mathbb{R}^{2}\right)$ to be a translation.
9. Prove that the composite of a rotation about a point a and reflection R_{L} in a line L is a reflection if and only if a lies on the line L and a glide reflection otherwise.
10. If $A B C D$ is a rectangle, show that $G_{D A} \circ G_{C D} \circ G_{B C} \circ G_{A B}=\mathrm{Id}$, where $G_{A B}$ is the he glide reflection along a (directed) line $A B$, and Id is the identity. Find a condition that ensures that gliding around a general quadrilateral in the plane is the identity.
11. Prove that every isometry in $\operatorname{Iso}\left(\mathbb{R}^{3}\right)$ is either: a rotation (about any line in \mathbb{R}^{3}), a translation, a screw translation (a rotation about some line followed by a translation parallel to that line), a reflection (about any plane in \mathbb{R}^{3}), a glide reflection (reflection in a plane Π followed by a translation parallel to Π), a rotatory reflection (a reflection in a plane Π followed by a rotation about an axis perpendicular to Π).
