
Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 3

1. Let G < Iso(R2) be a subgroup, and let Sx = {g ∈ G |gx = x} be the stabilizer of

x ∈ R2. Show that Sx is a subgroup of G, that Sx is isomorphic to Sy if x and y

belong to the same orbit of G, and that if G is discrete, then Sx is isomorphic to a

finite subgroup of O(2).

2. Let G < Iso+(R3) be a finite subgroup. Recall that in the lecture we proved that

there are either 2 or 3 orbits of the action of G on the (finite) set PG of poles on S2.

a) Show that when there are only two orbits, G is the cyclic group Cn generated

by rotation by 2π/n. Hint, use the formula we proved in class to compute the size of

the corresponding stabilizers.

b) Complete the details of the proof we gave in the lecture, and show that when

there are 3 different orbits, one has

S1 |Ω1| S2 |Ω2| S3 |Ω3| |G|
N 2 2 N 2 N 2N

3 4 3 4 2 6 12

4 6 3 8 2 12 24

5 12 3 20 2 30 60

c) Show that in the first case above, G = Dn, and that in the last three cases, G

correspond to the symmetry group of the tetrahedron, octahedron (or the cube) and

the icosahedron (or the dodecahedron) respectively.

Solution: First translate so that G fixes the origin. Then each non-identity element

of G is a rotation about an axis through 0. Let Ω be the set of unit vectors that are

fixed by by some non-identity element of G. Then Ω is a finite set and G acts on it.

Let Ω1,Ω2,...ΩJ be the different orbits in Ω. The orbitstabilizer theorem shows that

each vector u ∈ Ωj has a stabilizer of order Sj = |G|/|Ωj |. Now we count the number

of pairs in the set

X = {(A, u) : A ∈ G \ I, u ∈ S2, and Au = u}

Each A ∈ G \ I is a rotation and so fixes exactly two unit vectors. Therefore |X| =
2(|G| − 1). Alternatively, each u ∈ Ω gives rise to |Stab(u)| − 1 pairs in X. So

|X| =
J∑

j=1

(Sj − 1)|Ωj | =
J∑

j=1

|G| − |Ωj |
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Dividing by |G| we see that

2− 2

|G|
=

J∑
j=1

1− 1

Sj
(∗)

Each stabilizer of u ∈ Ω has order at least 2, so 1− 1
Sj

≥ 1
2 . Hence,

2 > 2− 2

|G|
=

J∑
j=1

1− 1

Sj
≥ 1

2
J,

and so J is 1, 2, or 3. Order the orbits so that S1 ≥ S2 ≥ S3 ≥ 2. Clearly there are

no solutions to equation (∗) above with J = 1. If J = 2 then (∗) gives

2− 2

|G|
= 2− 1

S1
− 1

S2
≤ 2− 2

S1
,

so S1 ≥ |G|. This implies that S1 = |G| and |Ω1| = 1. Hence,

2− 2

|G|
= 2− 1

S1
− 1

S2
= 2− 1

|G|
− 1

S2
,

and so S2 = |G| and |Ω2| = 1. Hence Ω consists of two unit vectors v and −v which

are fixed by each isometry in G. The group G is then a finite isometry group of the

plane orthogonal to v so it is cyclic by what we proved in class (i.e., the classification

of finite subgroup of isometries of R2. When J = 3, equation (∗) gives

1

S1
+

1

S2
+

1

S3
= 1 +

2

|G|

This implies that
3

S3
≥ 1 +

2

|G|
> 1,

so S3 = 2. Equation (∗) now yields

2

S2
≥ 1

S1
+

1

S2
=

1

2
+

2

|G|
≥ 1

2

which implies that S2 = 2 or 3. When S2 = 2 we have 1
S1

= 2
|G| which gives S1 =

N,S2 = 2, S3 = 2, and |G| = 2N . The orbit Ω1 has has just two points. Let v be one

of them. The stabilizer Stab(v) is a finite group of N rotations about v, so it is cyclic

generated by a rotation R. Choose u as one of the points in Ω3. Then the others are

Ru,R2u, . . . , RN−1u. The stabilizer of u has order 2, so it contains a rotation S of

order 2. This maps v to −v. From this it is not hard to conclude that in this case G

is isomorphic to the dihedral group Dn (Note that we are used to thinking of Dn as

a group acting on R2 and containing some reflections. As a subgroup of Iso(R3) the

elements of order two are not reflections but rotations by π). Next, when S2 = 3 we

have
1

S1
=

2

|G|
+

1

6
>

1

6
,
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so S1 = 3, 4 or 5. To conclude, we get all the different possibilities that appear in

the table of part (b) of the question. Finally, we need to show that these correspond

to the symmetry groups of the tetrahedron, octahedron and icosahedron respectively.

We will consider the middle case as an example. Here Ω1 has 6 points. The stabiliser

of each is a cyclic group of order S1 = 4. Choose one point v ∈ Ω1. The stabiliser of v

is a cyclic group of order 4; let R be a generator. Now −v is also fixed by R and has

the same stabiliser. So it must be in Ω1. There remain 4 other points in Ω1 and these

must be w,Rw,R2w,R3w all lying in the plane through 0 orthogonal to v. Hence the

points of Ω1 are the 6 vertices of a regular octahedron. Note that the points of Ω2 are

the midpoints of the faces of this octahedron and the points of Ω3 are the midpoints

of the edges. The points of Ω2 are the vertices of a cube. This is the dual of the

octahedron. The polyhedron and its dual have the same symmetry group.

3. Let f : R3 → R3 be given by f(v) = Av where

A =

 0 −1 0

0 0 −1

−1 0 0


Show that f is an isometry of R3, and that f(S2) = S2. Describe the isometry type of

f , considered as an isometry of the sphere, in detail. That is, describe it as a reflection

in a great circle C, rotation through an angle θ about a point a, or rotation through

an angle θ about a point a followed by reflection in the great circle normal to a. Give

C, θ and/or a explicitly.

Solution: It is straigforward to check that AAT = I3, and hence f is an isometry of

R3. Moureover, since f(0) = 0, and f is an isometry of R3, it preserves dot products

(and hence lengths of vectors). Thus f maps S2 to S2. Moreover, being an isometry,

f has an inverse, so f(S2) = S2. Now we turn to describe the isometry type of f :

Since det(A) = −1, f is orientation reversing. Moreover, it is not hard to check that

the only fixed point of f is the origin, which does not lie on the sphere. Thus, f

does not fix any point on S2, and hence must be a rotation about a point a, followed

by reflection in the great circle normal to a. To find a, we look for a point such

that f(a) = −a. This amounts to row-deducing of [A + I|0], for which the general

solution is Span{(1, 1, 1)}. Since we want a point that lies on the sphere, we take

a = 1√
3
(1, 1, 1) (we could take the minus of this point as well). To find the angle θ

of rotation, we take a point in the great circle normal to a, say v = 1√
2
(1,−1, 0), and

compute:

cos θ = v · f(v) = 1

2
(1,−1, 0) · (1, 0,−1) =

1

2
⇒ θ = ±π/3

To see which angle is correct we compute v × f(v) = (1, 1, 1), which is in the same

direction as a. Thus, the rotation is in the poisitve sense (using the right hand rule,

thumb pointing in the direction of a, fingers curl from v to f(v)), and so θ = π/3.

4. (**) For which of the five Platonic bodies can a (countable) collection of copies of the

body fill R3 (without overlaps and the tiling is assumed to be face to face)?
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In all the problems below a, b, c are the sides, and α, β, γ are the opposite

angles of a spherical triangle, where the radius of the sphere is R = 1.

5. Deduce from the spherical cosine theorem we proved in class that a+ b+ c < 2π.

Solution: It follows from the spherical cosine theorem that we we proved in class

that

cos a = cos b cos c+ sin b sin c cosα > cos b cos c− sin b sin c = cos(b+ c)

Looking at the graph of the function cos(x), for x ∈ [0, 2π], we immediatly conclude

that the above inequality implies that a < b+ c < 2π − a.

6. Prove the following cosine theorem (second cosine theorem) on the sphere

cosα = − cosβ cos γ + sinβ sin γ cos a

Solution: When we apply the cosine rule we proved in class to the dual triangle △∗

we obtain

cos a∗ = cos b∗ cos c∗ + sin b∗ sin c∗ cosα∗

Now we can use the result in question 10 below about the relations between angles

and side-lengths of △ and △∗ to conclude that

− cosα = (− cosβ)(− cos γ) + sinβ sin γ(− cos a)

7. (*) Prove the spherical sine theorem:

sin a

sinα
=

sin b

sinβ
=

sin c

sin γ

Hint: it might be useful to show first the following lemma (sometimes known as the

”three perpendiculars lemma”): Let A ∈ R3 be a point outside a plane P , let H be

its perpendicular projection on P , and let L be its perpendicular projection on a line

l contained in P . Then HL is perpendicular to l.

Solution: First, I will show a solution that does not use the above hint - I am showing

it since it gives an alternative proof of the spherical cosine theorem as well. Let C∗ be

the reflection of C in the plane spanned by A and B (i.e. reflection in the spherical line

through A and B). Note that we may assume that A = (0, 0, 1), B = (sin c, 0, cos c)

and C = (sin b cosα, sin b sinα, cos b). Indeed, we may apply an isometry to move

A to the North pole (0, 0, 1). Then a rotation about the z-axis will move the unit

tangent vector u to AB at A to (1, 0, 0). Then the point B is distance c from A in this

direction, so B = (sin c, 0, cos c). The unit tangent vector v to AC at A must be at

an angle α to u, so it is (cosα,± sinα, 0). By reflecting in the xz-plane, if necessary,

we may ensure that v = (cosα, sinα, 0). The point C is at distance b from A in

this direction, so C = (cos b)A + (sin b)v = (sin b cosα, sin b sinα, cos b) as requested.
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Note: from this argument one can conclude the spherical cosine theorem we proved

in class by calculating the distance a from B to C directly, i.e.,

cos a = B ·C = (sin c, 0, cos c)·(sin b cosα, sin b sinα, cos b) = sin b sin c cosα+cos b cos c

Back to the spherical sine theorem: The point C∗ is now given by

C∗ = (sin b cosα,− sin b sinα, cos b)

The Euclidean distance ∥C − C∗∥ between C and C∗ is equal to 2 sin 1
2d(C,C

∗). So

2 sin 1
2d(C,C

∗) = 2 sin b sinα. If we interchange A and B the point C is unchanged,

so we must have 2 sin b sinα = 2 sin a sinβ. Hence sin a/ sinα = sin b/ sinβ.

Here is a more geometric solution: First we prove the “theorem of the three

perpendiculars”.

Lemma: Let A ∈ R3 be a point outside a plane P , let H be its perpendicular

projection on P and let L be its perpendicular projection on a line l contained in P .

Then HL is perpendicular to l.

Proof of the Lemma: The line l is perpendicular to the plane AHL because it is

perpendicular to two nonparallel lines of AHL, namely to AL and AH (to the latter

since AH is orthogonal to any line in P ). Therefore l is perpendicular to any line of

the plane AHL, and in particular to LH.

Now we will use the above to prove the spherical sine theorem: LetH be the projection

of A on the plane ABC, let L and M be the projections of A on the lines OB and

OC. Then by the lemma, L and M coincide with the projections of H on OB and

OC. Therefore,

AH = LA sinβ = sin c sinβ, AH = MA sin γ = sin b sin γ

Thus, sin b/ sinβ = sin c/ sin γ. Similarily, by projecting C on the plane AOB and

arguing as above, we obtain sin b/ sinβ = sin a/ sinα. QED.

8. Prove that the medians of a spherical triangle interest at one point.

In Euclidean geometry, the fact that the three medians meet at a single point -

the centroid of the triangle - is a classical result which goes back to antiquity (see

e.g., http://www.cut-the-knot.org/triangle/medians.shtml) for several proofs of this

remarkable fact. In the sperical case, let △ = △(ABC) be a sperical triangle with 3

(spherical) medians MA, MB, MC connecting A with the mid-point of BC, B with

the midpoint of AC, and C with the mid-point of AB. Next, we look at the projection

of these spherical medians to the plane triangle ABC (here the projection is from the

center of the sphere). It is not hard to check that the image of the medians MA,MB

and MC are now medians of the plane triangel ABC and hence the statement follows

from a reduction to the Euclidean case.

9. To ”solve” a spherical triangle means to find all of the arc, angles, and vertex angles

given some of them. Solve a triangle with all three arc angles being π/3. Solve a

triangle with ∠A = ∠B = π/2 and ∠C = π/3
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Solution: For the first triangle, the spherical cosine theorem gives that cosα = 1/3,

which gives α = arccos(1/3), and by symmetry the other angles are the same. For

the second triangle, it’s better to use the second cosine law that we proved aboved.

10. Let ABC be a spherical triangle and let A′B′C ′ be its polar triangle. Show that

a+ α′ = b+ β′ = c+ γ′ = a′ + α = b′ + β = c′ + γ = π

Solution: We may apply an isometry to △ so that A = (1, 0, 0) and the unit tangent

vectors to AB and AC at A are u = (1, 0, 0) and v = (cosα, sinα, 0) respectively.

Then C∗ is perpendicular to the plane through A and B, so it is perpendicular to

A = (0, 0, 1) and u = (1, 0, 0). Hence, C∗ = ±(0, 1, 0). Since we also want C∗B >

0 we must have C∗ = (0, 1, 0). Similarly, B∗ = (sinα,− cosα, 0). Consequently,

B∗ · C∗ = − cosα and so the distance from B∗ to C∗ is π − α. By interchanging the

roles of A,B and C in the above argument we see that the side lengths a∗, b∗, c∗ in

△∗ are

a∗ = π − α, b∗ = π − β, c∗ = π − γ

Now we can use fact (Exercise 11 below) that the triangle △ is dual triangle to △∗,

and so the angles α∗, β∗, γ∗ must satisfy

a = π − α∗, b = π − β∗, c = π − γ∗

This completes the proof.

11. Prove that the polar spherical triangle of A∗B∗C∗ is ABC.

Solution: Recall that the dual triangle △∗ of △ is the spherical triangle with vertices

A∗, B∗, C∗ satisfying:

A∗ ·A > 0; A∗ ·B = 0; A∗ · C = 0;

B∗ ·A = 0; B∗ ·B > 0; B∗ · C = 0;

C∗ ·A = 0; C∗ ·B = 0; C∗ · C > 0.

Note that the unit vector A satisfies A ·B∗ = A ·C∗ = 0 and A ·A∗ > 0, so the original

triangle △ is the dual triangle of △∗. The vertices of △∗ represent the sides of △ and

the sides of △∗ represent the vertices of △.
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