Non-Euclidean Geometry (spring 2011)

Exercise No. 4 - Spherical Geometry and Möbius Transformation

1. Prove that if $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a Euclidean isometry with $f(0)=0$, and C is a great circle on S^{2}, then $f(C)$ is a great circle.
2. Show that every isometry of S^{2} is either the identity, reflection, rotation, or a rotation around a pair of points; followed by reflection in the great circle orthogonal to them.
3. Describe the isometry $g: S^{2} \rightarrow S^{2}$ given by $g(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0\end{array}\right](x)$. Hint: determine first how many fixed points g has.
4. Let $v \in S^{2}$, a great circle C orthogonal to v, and an angle θ. Set f to be the rotation by θ around v, and g a reflection in C. Show that $f g=g f$.
5. $\left(^{*}\right)$ Find all spherical triangles with angles $(\alpha, \beta, \gamma)=(\pi / p, \pi / q, \pi / r)$ where p, q, r are positive natural numbers. In each case deduce the number of triangles necessary to tile the sphere and calculate $V-F+E$ for the resulting tessalation.
6. Let $a, b, c, d \in \mathbb{C}$ with $a c-b d \neq 0$, and define a map $T: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ by $T: z \rightarrow \frac{a z+b}{c z+d}$. Show that these maps (called Möbius transformations) form a group (denoted below by Möb) under composition.
7. Show that the map $\phi: S L(2, \mathbb{C}) \rightarrow$ Möb, given by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \rightarrow \frac{a z+b}{c z+d}$ is a group homomorphism and find its kernel. The group $S L(2, \mathbb{C}) / \operatorname{Ker}(\phi)$ (which is isomorphic to Möb) is called the projective special linear group.
8. Show that the Möbius transformation $z \mapsto z+1$ is conjugate to its inverse in Möb .
9. Let $a, b, c, d \in \mathbb{R}$, let $z \in \mathbb{C}$, and define $f(z)=\frac{a z+b}{c z+d}$. Show that if $a d-b c \leq 0$ then $f(z)$ is not a one-to-one (or onto) map from the upper half plane \mathbb{H}^{2} to itself, and that if $a d-b c>0$ then $f(z)$ is a one-to-one and onto map from $\mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$.
10. (a) Show that any Möbius transformation, other than the identity map, has either one or two fixed points. (b) Let $A \in G L(2, \mathbb{C})$, and let $\left(z_{1}, z_{2}\right)^{T}$ be an eigenvector for the matrix A. Show that z_{1} / z_{2} is a fixed point for the Möbius transformation $T_{A}(z)=\frac{a z+b}{c z+d}$. (c) Find the fixed points of $h_{b}(z)=z+b, k_{a}(z)=a z$, and $i(z)=1 / z$, where $a, b \neq 0$, and $a \neq 1$. (d) Show that for each $A \in G L(2, \mathbb{C})$, there exists $B \in G L(2, \mathbb{C})$ such that $T_{B}^{-1} \circ T_{A} \circ T_{B}$ is in the form of one of the functions in the list above.
