Non-Euclidean Geometry (spring 2011)

Exercise No. 4 - Spherical Geometry and Möbius Transformation

- 1. Prove that if $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a Euclidean isometry with f(0) = 0, and C is a great circle on S^2 , then f(C) is a great circle.
- 2. Show that every isometry of S^2 is either the identity, reflection, rotation, or a rotation around a pair of points; followed by reflection in the great circle orthogonal to them.
- 3. Describe the isometry $g: S^2 \to S^2$ given by $g(x) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$ (x). Hint: determine first how many fixed points g has.
- 4. Let $v \in S^2$, a great circle C orthogonal to v, and an angle θ . Set f to be the rotation by θ around v, and g a reflection in C. Show that fg = gf.
- 5. (*) Find all spherical triangles with angles $(\alpha, \beta, \gamma) = (\pi/p, \pi/q, \pi/r)$ where p, q, r are positive natural numbers. In each case deduce the number of triangles necessary to tile the sphere and calculate V F + E for the resulting tessalation.
- 6. Let $a, b, c, d \in \mathbb{C}$ with $ac bd \neq 0$, and define a map $T : \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ by $T : z \to \frac{az+b}{cz+d}$. Show that these maps (called Möbius transformations) form a group (denoted below by Möb) under composition.
- 7. Show that the map $\phi : SL(2,\mathbb{C}) \to \text{M\"ob}$, given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \to \frac{az+b}{cz+d}$ is a group homomorphism and find its kernel. The group $SL(2,\mathbb{C})/\text{Ker}(\phi)$ (which is isomorphic to M\"ob) is called the projective special linear group.
- 8. Show that the Möbius transformation $z \mapsto z + 1$ is conjugate to its inverse in Möb .
- 9. Let $a, b, c, d \in \mathbb{R}$, let $z \in \mathbb{C}$, and define $f(z) = \frac{az+b}{cz+d}$. Show that if $ad bc \leq 0$ then f(z) is not a one-to-one (or onto) map from the upper half plane \mathbb{H}^2 to itself, and that if ad bc > 0 then f(z) is a one-to-one and onto map from $\mathbb{H}^2 \to \mathbb{H}^2$.
- 10. (a) Show that any Möbius transformation, other than the identity map, has either one or two fixed points. (b) Let $A \in GL(2, \mathbb{C})$, and let $(z_1, z_2)^T$ be an eigenvector for the matrix A. Show that z_1/z_2 is a fixed point for the Möbius transformation $T_A(z) = \frac{az+b}{cz+d}$. (c) Find the fixed points of $h_b(z) = z + b$, $k_a(z) = az$, and i(z) = 1/z, where $a, b \neq 0$, and $a \neq 1$. (d) Show that for each $A \in GL(2, \mathbb{C})$, there exists $B \in GL(2, \mathbb{C})$ such that $T_B^{-1} \circ T_A \circ T_B$ is in the form of one of the functions in the list above.