
Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 4

1. Prove that if f : R3 → R3 is a Euclidean isometry with f(0) = 0, and C is a great

circle on S2, then f(C) is a great circle.

2. Show that every isometry of S2 is either the identity, reflection, rotation, or a rotation

around a pair of points; followed by reflection in the great circle orthogonal to them.

Solution: One way to solve this question is to use the fact that every isometry of

S2 is of the form f(x) = Ax for A ∈ O(3), and use question 3 from Daf Targil

3. Another way is to consider the fixed points of the map. If f fixes 3 spherically

independent points then f is the identity. If f fixes 2 spherically independent points

then f is a reflection. If f fixes 1 (spherically independent) point then f can be

accomplished using two re reflections. But, as reflections in R3, these are not parallel

since both hyperplanes pass through the origin. So they give a rotation. The only

remaining case is that f fixes no points on S2 We know that f(x) = Ax for some

A ∈ O(3). The eigenvalues of A are the roots of the equation det(λI −A) = 0, which

is a cubic equation. Being a polynomial of odd degree, it has at least one real root,

and hence at least one real eigenvalue µ. So f(v) = Av = µv for some v ∈ S2. Since

f(v) ∈ S2, ∥µv∥ = 1 and so µ = ±1. But µ ̸= 1 since f has no fixed points. Thus

f(v) = −v. Now consider the hyperplane H = {x ∈ R3 | v ·x = 0}. As an isometry of

R3, f must map H to H (since f preserves angles). By changing coordinates, we can

consider H to be a copy of R2. Then f restricted to H is an orientation preserving

isometry of R2 that fixes the origin. So f restricted to H is a rotation about the

origin. Thus f is a reflection through the great circle C = H ∩ S2, followed by a

rotation about v.

3. Describe the isometry g : S2 → S2 given by g(x) =

 0 1 0

0 0 1

−1 0 0

 (x). Hint: deter-

mine first how many fixed points g has.

Solution: We see that det(A) = −1 where A is the corresponding matrix, so it is

orientation reversing. Does it requires an odd number of reflections. Next we find the

fixed points of g by solving (A − I)v = 0: the only solution is x = y = z = 0, but

this isn’t a point on S2. So g fixes nothing (as an isometry of S2). Thus, it isn’t a

reflection. From question 2 about we conclude that it must be a reflection combined

with a rotation. We can find the axis of reflection by solving A(v) = −v where

v = (x, y, z). The solutions are k(1,−1, 1), k ∈ R, and since we only want solutions

on S2, we get the points ±(1,−1, 1)/
√
3. Then g consists of a reflection through
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C = {x ∈ S2 | ⟨v, x⟩ = 0}, followed by a rotation about v, where v = ±(1,−1, 1)/
√
3.

To find the rotation, choose a point u on C, say u = (1, 1, 0)/
√
2 (choose u such

that v · u = 0 and normalize). We can directly compute u′ = g(u) = (1, 0,−1)/
√
2.

The angle of rotation is exactly the angle between u and u′, so cos θ = u · u′ = 1/2.

Thus the rotation is by ±π/3. We have still only specified both v and u up to sign.

The two choices determine each other. Let us choose θ = π/3. Then we would have

u×u′ = v sin θ, (−1, 1,−1)/2 = v
√
3/2, and (−1, 1,−1)/sqrt3 = v. So g consists of a

rotation of +π/3 around v = (−1, 1,−1)/
√
3, followed by a reflection in the great circle

orthogonal to v. Had we chosen θ = −π/3, we would have obtained v = (1,−1, 1)/
√
3.

4. Let v ∈ S2, a great circle C orthogonal to v, and an angle θ. Set f to be the rotation

by θ around v, and g a reflection in C. Show that fg = gf .

Solution: The great circle C is given by C = {u ∈ S2 | u · v = 0}. Take two points

b and c on C such that b ̸= ±c. Then, the points v, b and c do not lie on a common

great circle and hence spherically independent. Let b′ = f(b), c′ = f(c). Note that

b′, c′ are both on C. The points b, b′, c, c′ are all on C and so are fixed by g. The

points ±v are both fixed by f . Now:

g(f(v)) = g(v) = −v, g(f(b)) = g(b′) = b′, g(f(c)) = g(c′) = c′

f(g(v)) = f(−v) = −v, f(g(b)) = f(b) = b′, f(g(c)) = f(c) = c′

Recall that an isometry is determined by its action on a (spherical) basis. Since fg

and gf agree on the (spherical) basis v, b, c they must be equal.

Another solution would be the following: write down a generic formula for the rotation

and re flection. The rotation will need a change of basis matrix: the first two columns

of this matrix will be orthogonal to v, the third will be v. Based on this orthogonality,

we can argue that the matrix product is commutative

5. (*) Find all spherical triangles with angles (α, β, γ) = (π/p, π/q, π/r) where p, q, r are

positive natural numbers. In each case deduce the number of triangles necessary to

tile the sphere and calculate V − F + E for the resulting tessellation.

Solution (sketch): It follows from the formula for the area of a spherical triangle

that any such triangle (π/p, π/q, π/r), where N copies of which cover the sphere, must

satisfy the Diophantine equation N/p + N/q + N/r = N + 4. The solutions of this

Diophantine equation are: (2, 3, 3), (2, 3, 4), (2, 3, 5), (1, n, n), (2, 2, n) for n = 2, 3, . . ..

Four examples are shown in a pdf file in the course webpage.

6. Let a, b, c, d ∈ C with ac − bd ̸= 0, and define a map T : C ∪ {∞} → C ∪ {∞} by

T : z → az+b
cz+d . Show that these maps (called Möbius transformations) form a group

(denoted below by Möb) under composition.

Solution: Let f1(z) =
a1z+b1
c1z+d1

and f2(z) =
a2z+b2
c2z+d2

. Then

f1(f2(z)) =
a1

a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d1
=

a1a2z + a1b2 + b1c2z + b1d2
c1a2z + b2c1 + d1c2z + d1d2
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Moreover, it is easy to check that h(z) = 1z+0
0z+1 is the identity, and that g(z) = dz−b

−cz+a

is the inverse of the Möbius transformation f(z) = az+b
cz+d .

7. Show that the map ϕ : SL(2,C) → Möb, given by

(
a b

c d

)
→ az+b

cz+d is a group

homomorphism and find its kernel. The group SL(2,C)/Ker(ϕ) (which is isomorphic

to Möb) is called the projective special linear group.

8. Show that the Möbius transformation z 7→ z + 1 is conjugate to its inverse in Möb .

Hint: Note that f(z) = z + 1 is represented by A =

(
1 1

0 1

)
, and it’s inverse

g(z) = z− 1 is represented by B =

(
1 −1

0 1

)
. By a direct computation one can find

D ∈ Möb such that DAD−1 = B.

9. Let a, b, c, d ∈ R, let z ∈ C, and define f(z) = az+b
cz+d . Show that if ad − bc ≤ 0 then

f(z) is not a one-to-one (or onto) map from the upper half plane H2 to itself, and

that if ad− bc > 0 then f(z) is a one-to-one and onto map from H2 → H2.

Solution: It is not hard to check that the imaginary part of az+b
cz+d is (ad−bc)Im(z)

|cz+d|2 in

general, and so when ad− bc = 0, we have an imaginary part of 0 and therefore there

will be points in the upper half plane that get mapped to real numbers. Likewise

if ad − bc < 0 then there will be points in the upper half plane that get mapped

to points in the lower half plane. Thus, it is not a map from H2 → H2. There is

nothing to show for one-to-one or onto since it isn’t even a function from H2 to itself.

Next, if ad − bc > 0 then the function f(z) is indeed a one-to-one and onto map

from H2 → H2. First we show f(z) = az+b
cz+d is one-to-one. Consider two points z

and w and suppose f(z) = f(w). Then az+b
cz+d = aw+b

cw+d . By cross multiply one has

aczw + adz + bcw + bd = aczw + bcz + adw + bd. Thus (ad− bc)(z) = (ad− bc)(w).

Since ad− bc is positive by assumption here, we can cancel this term and get z = w.

To show that f(z) is onto, notice that if ad − bc ̸= 0, then f−1(w) = dw−b
−cw+a is the

inverse to f(z) and so f−1(w) = z will be the point that maps to w under f . Note

that w is a complex number in the upper half plane so cannot be zero. Secondly, if

a = c = 0 then ad − bc = 0 which is a contradiction. So either a or wc is nonzero.

Also, a cannot equal wc since one is real and the other imaginary.

10. (a) Show that any Möbius transformation, other than the identity map, has either

one or two fixed points. (b) Let A ∈ GL(2,C), and let (z1, z2)
T be an eigenvector

for the matrix A. Show that z1/z2 is a fixed point for the Möbius transformation

TA(z) =
az+b
cz+d . (c) Find the fixed points of hb(z) = z + b, ka(z) = az, and i(z) = 1/z,

where a, b ̸= 0, and a ̸= 1. (d) Show that for each A ∈ GL(2,C), there exists

B ∈ GL(2,C) such that T−1
B ◦TA ◦TB is in the form of one of the functions in the list

above.
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