Non-Euclidean Geometry (spring 2011)

Exercise No. 5 - Möbius transformations

- 1. Prove that two points $w, z \in \overline{\mathbb{C}}$ correspond to antipodal points in S^2 under stereographic projection if, and only if, w = J(z) for the transformation $J(z) = -1/\overline{z}$. Show that any Möbius transformation T other than the identity has either one or two fixed points on $\mathbb{C} \cup \{\infty\}$. Show that the Möbius transformation corresponding under stereographic projection to a non-trivial rotation has two antipodal fixed points. Show that a Möbius transformation $T : z \to (az + b)/(cz + d)$, with ad - bc = 1 satisfies $J^{-1}TJ = T$ precisely when $d = \overline{a}$ and $c = -\overline{b}$.
- 2. Let g, h be two Möbius transformations with real coefficients (i.e., the corresponding matrices lie in $SL(2, \mathbb{R})$, so that g is parabolic. Assume that g(y) = y and $h(y) \neq y$ for some $y \in \overline{\mathbb{C}}$. Does the commutator $f = ghg^{-1}h^{-1}$ parabolic? hyperbolic? elliptic?
- 3. Let $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be a transformation preserving the cross-ratio

$$D(x, y, z, w) = D(f(x), f(y), f(z), f(w))$$

for all pair-wise distinct points x, y, z, w. Show that f is a Möbius transformation. Hint: prove first that f is ono-to-one and onto and then look at the map g(z) = D(a, b, c, z), for some fixed points a, b, c.

- 4. Let S be a circle in \overline{C} , and let f be a Möbius transformation. Let h be the reflection over S. Prove that fhf^{-1} is the reflection over f(S). (Note that the statement is trivial when in addition f is a Euclidean isometry).
- 5. Show that every reflection of $\overline{\mathbb{C}}$ is of the form $f(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$, where $a, b, c, d \in \mathbb{C}$, and ad bc = 1. Show that the opposite statement is false (that is give an example of a transformation of the above form which is not a reflection.)
- 6. Let $f \neq 1$ be a Möbius transformation. Show that the cross-ratio $D(z, fz, f^2z, f^3z)$ does not depend on the choice of the point z (whenever it is defined). Express this quantity in terms of $tr^2(f)$, and explore the cases when f is of order 2 and 3.
- 7. Find all of the Möbius transformations that commute with $z \mapsto kz$ for a fixed k.
- 8. Show that inversion maps any circle to another circle. Show that inversion preserves the magnitude of angles but reverses their orientation.
- 9. Show that the composition of an even number of inversions is a Möbius transformation.
- 10. Show that any loxodromic transformation is the composite of 4 inversions.