
Non-Euclidean Geometry (spring 2011)

Partial solutions to exercise No. 5 - Möbius transformations

1. Prove that two points w, z ∈ C correspond to antipodal points in S2 under stere-

ographic projection if, and only if, w = J(z) for the transformation J(z) = −1/z.

Show that any Möbius transformation T other than the identity has either one or two

fixed points on C ∪ {∞}. Show that the Möbius transformation corresponding under

stereographic projection to a non-trivial rotation has two antipodal fixed points. Show

that a Möbius transformation T : z → (az + b)/(cz + d), with ad − bc = 1 satisfies

J−1TJ = T precisely when d = a and c = −b.

2. Let g, h be two Möbius transformations with real coefficients (i.e., the corresponding

matrices lie in SL(2, R), so that g is parabolic. Assume that g(y) = y and h(y) 6= y

for some y ∈ C. Does the commutator f = ghg−1h−1 parabolic? hyperbolic? elliptic?

Solution: Since g is parabolic, it is conjugate to z 7→ z + 1 (we moved the point y

to infinity). Now let h(z) = az+b
cz+d

. Since ∞ is not a fixed point of h it follows that

c 6= 0. A direct computation shows that trace(f) = 2 + c2 and hence trace(f) > 2

which implies that f is hyperbolic.

3. Let f : C → C be a transformation preserving the cross-ratio

D(x, y, z, w) = D(f(x), f(y), f(z), f(w))

for all pair-wise distinct points x, y, z, w. Show that f is a Möbius transformation.

Hint: prove first that f is ono-to-one and onto and then look at the map g(z) =

D(a, b, c, z), for some fixed points a, b, c.

Solution: Note first that f is one-to-one (otherwise, if f(a) = f(b) for a 6= b, we

can find points c and d such that the right-hand-side of the equality would be zero

while the left-hand-side won’t), and onto (otherwise the given equality would not

hold). Next, let g(z) = D(a, b, c, z). It is easy to check that g is Möbius. Since

f is invertible, the map g(f−1(z) = D(a, b, c, f−1(z)) = D(f(a), f(b), f(c), z) is also

Möbius (since H(z) = D(f(a), f(b), f(c), z) is). From this we conclude that f must

be a Möbius transformation as well.

4. Let S be a circle in C, and let f be a Möbius transformation. Let h be the refection

over S. Prove that fhf−1 is the refection over f(S). (Note that the statement is

trivial when in addition f is a Euclidean isometry).

Solution: Let g(z) = f ◦ h ◦ f−1(z), and denote by D−, D+ the “interior” of f(S)”

and the “exterier” of f(S) accordingly. Note that (i) g(f(S)) = f(S), (ii) g2 = Id,
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(iii) g(D+) = D− and g(D−) = g(D+) (indeed, this follows from the continuity of

the map and the fact that h is a relection over S.), (iv) g preserves angle and the

cross-ratio (since f ,h, and f−1 preserve it ). Combine this with what we proved in

class we obtain that fhf−1 is the refection over f(S)

5. Show that every refection of C is of the form f(z) = az+b
cz+d

, where a, b, c, d ∈ C, and

ad − bc = 1. Show that the opposite statement is false (that is give an example of a

transformation of the above form which is not a reflection.)

Solution: First, assume that f is a reflection w.r.t a (genuine) line l. It is not hard to

check that after applying a transformation of the form g(z) = αz + β, where |α| = 1,

we can “transform” l to the real-axis. From the previous question it follows that

gfg−1 is a reflection of the x-axis since g(l) = R. In other words, gfg−1(z) = z̄, and

hence f(z) = ᾱz̄+β̄−β
α

. Moreover, note that since |α| = 1, the condition “ad − bc = 1”

for the map f is satisfied. Next, assume that f is a reflection w.r.t a (genuine) circle

S. We first “translate” S to the unit circle using the map T (z) = (z − v)/R, where R

is the radius, and v is the center of the circle S. Again, using the previous question,

one has that T−1fT is a reflection w.r.t the unit circle S1, i.e, T (z) = −1/z̄. From

this we can conclude by direct computation that f(z) = vz̄+(R2−|v|2)
z̄−v̄

. After resealing

(both the numerator and a denominator) by iR, the claim follows.

To see that the opposite statement is false, one can consider the map f(z) = −4z̄ (by

looking at the fixed points, it’s clear that f is not a reflection).

6. Let f 6= 1 be a Möbius transformation. Show that the cross-ratio D(z, fz, f 2z, f3z)

does not depend on the choice of the point z (whenever it is defined). Express this

quantity in terms of tr2(f), and explore the cases when f is of order 2 and 3.

7. Find all of the Möbius transformations that commute with z 7→ kz for a fixed k.

Solution: It is easy to check that the only Möbius transformations that commute

with z 7→ kz are of the form z 7→ k′z.

8. Show that inversion maps any circle to another circle. Show that inversion preserves

the magnitude of angles but reverses their orientation.

Solution: Consider a circle γ, with centre O and radius r. Recall that an inversion in

γ is the transformation that sends a point X other than the origin to the point X ′ on

the line OX, on the same side of O as X, such that |OX ′|·|OX| = r2. Inversion clearly

sends straight lines through O to themselves. It sends straight lines not through O

to circles through O let l be a straight line not through O. Drop the perpendicular

from O to l, and let the foot of this perpendicular be P . Let its image under the

inversion be P ′. Let Q be another point on l, and let Q′ be its image. We know

that |OP | · |OP ′| = |OQ| · |OQ′| = r2, so P , P ′, Q, and Q′ are concyclic. Since

∠OPQ = π/2, we get that ∠OQ′P ′ = π/2. Therefore, Q′ lies on the circle with

diameter OP ′. This circle is therefore the image of l. (We think of O as the image of

∞ under the inversion.) Finally, given a circle S that does not pass through O, the

inversion of S in γ is another circle. Let l1 be the line from O to the centre of S, and

2



let l2 be another line through O that meets S. Let P1 and P2 be the points where

l1 meets S, with P1 nearer to O, and let Q1 and Q2 be the points where l2 meets S,

with Q1 nearer to O. Let the images of these points be P ′
1, P

′
2, Q

′
1 and Q′

2 respectively.

Since |OP1| · |OP ′
1| = |OP2| · |OP ′

2| = r2, we get that
|OP ′

2
|

|OP1|
=

|OP ′

1
|

|OP2|
= r2

|OP1|·|OP2|
. This

means that the image of S is an enlargement of S about O. This sends circles to

circles, so the image of S is a circle.

Recall that f : C → C is said to be orientation reversing or anticonformal if f preserves

the cosine of the angle between two intersecting curves and reverses the orientation.

A classical fact from complex analysis gives that f is orientation reversing if and only

if f̄ is holomorphic. Combine this with the fact that any inversion is of the form

z 7→ r2

z̄−ā
+ a completes the proof.

Another way to see that an inversion preserves the magnitude of an angle is the

following: Recall from calculus that the angle between two circles ki(x
2 + y2) + aix +

biy + ci = 0, for i = 1, 2 at a common point, (x0, y0) is the angle between their

(not necessarily unit) normals at that point, which are: (2k1x0 + a1, 2k1y0 + b1), and

(2k2x0 + a2, 2k2y0 + b2). Hence the cosine of the angle between them is

cos =
a1a2 + b1b2 − 2k1c2 − 2k2c1

√

a2
1 + b2

1 − 4k1c1

√

a2
2 + b2

2 − 4k2c2

Finally, check that if k(x2 + y2) + ax + by + c = 0 is the equation of the circle, then

the equation of its inverse is c(x2 + y2) + ax + by + k = 0, and note that in the above

expression for the cosine of the angle between two circles, it does not change if you

swap k and c. This proves that inversion preserves the magnitude of angles.

9. Show that the composition of an even number of inversions is a Möbius transformation.

Solution: Let C be the particular inversion z → z̄. If Γ is a circle, we can find a

Möbius transformation T that maps R ∪∞ onto Γ. Then inversion in Γ is given by

J = T ◦C ◦T−1. If T (z) = az+b
cz+d

, then C ◦T ◦C(z) = āz+b̄

c̄z+d̄
. This shows that C ◦T ◦C

is a Möbius transformation. Hence

C ◦ J = C ◦ T ◦ C ◦ T−1 = (C ◦ T ◦ C) ◦ T−1

is a Möbius transformation, as is its inverse J ◦ C. Now if J1, J2 are two inversions

we can write J2 ◦ J1 = (J2 ◦ C) ◦ (C ◦ J1) to show that J2 ◦ J1 is a Möbius transfor-

mation. In particular, the composition of an even number of inversions is a Möbius

transformation.

10. Show that any loxodromic transformation is the composite of 4 inversions.
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