Non-Euclidean Geometry (spring 2011)

Partial solutions to exercise No. 5 - Mobius transformations

1. Prove that two points w,z € C correspond to antipodal points in S? under stere-
ographic projection if, and only if, w = J(z) for the transformation J(z) = —1/Z.
Show that any Md&bius transformation 7' other than the identity has either one or two
fixed points on C U {oo}. Show that the Mdbius transformation corresponding under
stereographic projection to a non-trivial rotation has two antipodal fixed points. Show
that a Mobius transformation 7' : z — (az + b)/(cz + d), with ad — be = 1 satisfies
J~ITJ = T precisely when d = @ and ¢ = —b.

2. Let g, h be two Mdbius transformations with real coefficients (i.e., the corresponding
matrices lie in SL(2,R), so that g is parabolic. Assume that g(y) = y and h(y) # y
for some 3 € C. Does the commutator f = ghg~'h~! parabolic? hyperbolic? elliptic?

Solution: Since g is parabolic, it is conjugate to z — z + 1 (we moved the point y
to infinity). Now let h(z) = Zjig Since oo is not a fixed point of h it follows that
¢ # 0. A direct computation shows that trace(f) = 2 + ¢? and hence trace(f) > 2

which implies that f is hyperbolic.

3. Let f: C — C be a transformation preserving the cross-ratio

D(x,y,z,w) = D(f(x), f(y), f(2), f(w))

for all pair-wise distinct points x,y, z,w. Show that f is a Mobius transformation.
Hint: prove first that f is ono-to-one and onto and then look at the map g(z) =
D(a,b,c, z), for some fixed points a, b, c.

Solution: Note first that f is one-to-one (otherwise, if f(a) = f(b) for a # b, we
can find points ¢ and d such that the right-hand-side of the equality would be zero
while the left-hand-side won’t), and onto (otherwise the given equality would not
hold). Next, let g(z) = D(a,b,c,z). It is easy to check that g is M&bius. Since
f is invertible, the map g(f~!(z) = D(a,b,c, f~1(2)) = D(f(a), f(b), f(c), 2) is also
Mobius (since H(z) = D(f(a), f(b), f(c),z) is). From this we conclude that f must
be a Mobius transformation as well.

4. Let S be a circle in C, and let f be a Mobius transformation. Let h be the refection
over S. Prove that fhf~! is the refection over f(S). (Note that the statement is
trivial when in addition f is a Euclidean isometry).

Solution: Let g(z) = foho f~1(z), and denote by D, DT the “interior” of f(S)”
and the “exterier” of f(S) accordingly. Note that (i) g(f(9)) = f(S), (ii) g% = 1d,



(i1i) g(DT) = D~ and g(D~) = g(D%) (indeed, this follows from the continuity of
the map and the fact that h is a relection over S.), (iv) g preserves angle and the
cross-ratio (since f,h, and f~! preserve it ). Combine this with what we proved in
class we obtain that fhf~! is the refection over f(S)

. Show that every refection of C is of the form f(z) = ‘c’;_rg, where a,b,c,d € C, and
ad — bc = 1. Show that the opposite statement is false (that is give an example of a

transformation of the above form which is not a reflection.)

Solution: First, assume that f is a reflection w.r.t a (genuine) line /. It is not hard to
check that after applying a transformation of the form g(z) = az + (3, where |a| =1,
we can “transform” [ to the real-axis. From the previous question it follows that
gfg'is a reflection of the z-axis since g(I) = R. In other words, gfg~1(z) = z, and
hence f(z) = %“ﬁ—ﬁ Moreover, note that since |«| = 1, the condition “ad — be = 17
for the map f is satisfied. Next, assume that f is a reflection w.r.t a (genuine) circle
S. We first “translate” S to the unit circle using the map 7'(z) = (z —v)/R, where R
is the radius, and v is the center of the circle S. Again, using the previous question,

one has that T~ fT is a reflection w.r.t the unit circle S!, i.e, T(z) = —1/2z. From

vE+(R?—|v]?)
Z—o

(both the numerator and a denominator) by iR, the claim follows.

this we can conclude by direct computation that f(z) = . After resealing

To see that the opposite statement is false, one can consider the map f(z) = —4z (by
looking at the fixed points, it’s clear that f is not a reflection).

. Let f # 1 be a M&bius transformation. Show that the cross-ratio D(z, fz, f2z, f32)
does not depend on the choice of the point z (whenever it is defined). Express this
quantity in terms of tr?(f), and explore the cases when f is of order 2 and 3.

. Find all of the Mobius transformations that commute with z — kz for a fixed k.

Solution: It is easy to check that the only Md&bius transformations that commute
with z — kz are of the form z — k’z.

. Show that inversion maps any circle to another circle. Show that inversion preserves
the magnitude of angles but reverses their orientation.

Solution: Consider a circle v, with centre O and radius r. Recall that an inversion in
~ is the transformation that sends a point X other than the origin to the point X’ on
the line OX, on the same side of O as X, such that |OX’|-|OX| = r2. Inversion clearly
sends straight lines through O to themselves. It sends straight lines not through O
to circles through O let [ be a straight line not through O. Drop the perpendicular
from O to [, and let the foot of this perpendicular be P. Let its image under the
inversion be P’. Let Q be another point on [, and let )’ be its image. We know
that |OP| - |OP'| = |0Q|-|0Q'| = 72, so P, P', Q, and Q' are concyclic. Since
ZOPQ = w/2, we get that ZOQ'P' = ©/2. Therefore, Q' lies on the circle with
diameter OP’. This circle is therefore the image of . (We think of O as the image of
oo under the inversion.) Finally, given a circle S that does not pass through O, the
inversion of S in + is another circle. Let [1 be the line from O to the centre of S, and



let Is be another line through O that meets S. Let P; and P> be the points where
[y meets S, with P; nearer to O, and let J1 and ()2 be the points where [5 meets S,
with Q1 nearer to O. Let the images of these points be Py, Py, Q) and Q5 respectively.
Since |OPy| - |OP]| = |OP,| - |OPS| = r?, we get that }8%,{ = igg} = \OPlT»2|OP2|‘ This
means that the image of S is an enlargement of S about O. This sends circles to

circles, so the image of S is a circle.

Recall that f : C — Cis said to be orientation reversing or anticonformal if f preserves
the cosine of the angle between two intersecting curves and reverses the orientation.
A classical fact from complex analysis gives that f is orientation reversing if and only

if f is holomorphic. Combine this with the fact that any inversion is of the form
7‘2

= ——
z zZ—a

+ a completes the proof.

Another way to see that an inversion preserves the magnitude of an angle is the
following: Recall from calculus that the angle between two circles k;(z2 + y?) 4 a;x +
biy + ¢ = 0, for i = 1,2 at a common point, (zg,yg) is the angle between their
(not necessarily unit) normals at that point, which are: (2kiz + a1, 2k1y0 + b1), and
(2koxo + a2, 2kayo + ba). Hence the cosine of the angle between them is

aiag + biby — 2ki1co — 2kocy
\/a% + b% — 4k \/a% + b% — 4koco

COS =

Finally, check that if k(22 + y?) + ax + by 4+ ¢ = 0 is the equation of the circle, then
the equation of its inverse is c(x? 4 y2) + ax + by + k = 0, and note that in the above
expression for the cosine of the angle between two circles, it does not change if you
swap k and c. This proves that inversion preserves the magnitude of angles.

9. Show that the composition of an even number of inversions is a Mébius transformation.

Solution: Let C be the particular inversion z — Zz. If I' is a circle, we can find a
Mobius transformation 7' that maps R U oo onto I'. Then inversion in I' is given by
J=ToCoT 1. IfT(z) = ZZZIS, then CoToC(z) = gj—i‘g. This shows that CoT oC
is a Mobius transformation. Hence

CoJ=CoToCoT '=(CoToC)oT™!

is a Mobius transformation, as is its inverse J o C. Now if Jp,Jo are two inversions
we can write Jy o J; = (Jo 0 () o (C o Jy) to show that Jy o J; is a Mobius transfor-
mation. In particular, the composition of an even number of inversions is a Mobius
transformation.

10. Show that any loxodromic transformation is the composite of 4 inversions.



