Non-Euclidean Geometry (spring 2011)

Partial solutions to exercise No. 5-Möbius transformations

1. Prove that two points $w, z \in \overline{\mathbb{C}}$ correspond to antipodal points in S^{2} under stereographic projection if, and only if, $w=J(z)$ for the transformation $J(z)=-1 / \bar{z}$. Show that any Möbius transformation T other than the identity has either one or two fixed points on $\mathbb{C} \cup\{\infty\}$. Show that the Möbius transformation corresponding under stereographic projection to a non-trivial rotation has two antipodal fixed points. Show that a Möbius transformation $T: z \rightarrow(a z+b) /(c z+d)$, with $a d-b c=1$ satisfies $J^{-1} T J=T$ precisely when $d=\bar{a}$ and $c=-\bar{b}$.
2. Let g, h be two Möbius transformations with real coefficients (i.e., the corresponding matrices lie in $S L(2, \mathbb{R})$, so that g is parabolic. Assume that $g(y)=y$ and $h(y) \neq y$ for some $y \in \overline{\mathbb{C}}$. Does the commutator $f=g h g^{-1} h^{-1}$ parabolic? hyperbolic? elliptic?
Solution: Since g is parabolic, it is conjugate to $z \mapsto z+1$ (we moved the point y to infinity). Now let $h(z)=\frac{a z+b}{c z+d}$. Since ∞ is not a fixed point of h it follows that $c \neq 0$. A direct computation shows that $\operatorname{trace}(f)=2+c^{2}$ and hence trace $(f)>2$ which implies that f is hyperbolic.
3. Let $f: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ be a transformation preserving the cross-ratio

$$
D(x, y, z, w)=D(f(x), f(y), f(z), f(w))
$$

for all pair-wise distinct points x, y, z, w. Show that f is a Möbius transformation. Hint: prove first that f is ono-to-one and onto and then look at the map $g(z)=$ $D(a, b, c, z)$, for some fixed points a, b, c.
Solution: Note first that f is one-to-one (otherwise, if $f(a)=f(b)$ for $a \neq b$, we can find points c and d such that the right-hand-side of the equality would be zero while the left-hand-side won't), and onto (otherwise the given equality would not hold). Next, let $g(z)=D(a, b, c, z)$. It is easy to check that g is Möbius. Since f is invertible, the map $g\left(f^{-1}(z)=D\left(a, b, c, f^{-1}(z)\right)=D(f(a), f(b), f(c), z)\right.$ is also Möbius (since $H(z)=D(f(a), f(b), f(c), z)$ is). From this we conclude that f must be a Möbius transformation as well.
4. Let S be a circle in \bar{C}, and let f be a Möbius transformation. Let h be the refection over S. Prove that $f h f^{-1}$ is the refection over $f(S)$. (Note that the statement is trivial when in addition f is a Euclidean isometry).
Solution: Let $g(z)=f \circ h \circ f^{-1}(z)$, and denote by D^{-}, D^{+}the "interior" of $f(S)$ " and the "exterier" of $f(S)$ accordingly. Note that $(i) g(f(S))=f(S)$, (ii) $g^{2}=\mathrm{Id}$,
(iii) $g\left(D^{+}\right)=D^{-}$and $g\left(D^{-}\right)=g\left(D^{+}\right)$(indeed, this follows from the continuity of the map and the fact that h is a relection over S.), (iv) g preserves angle and the cross-ratio (since f, h, and f^{-1} preserve it). Combine this with what we proved in class we obtain that $f h f^{-1}$ is the refection over $f(S)$
5. Show that every refection of $\overline{\mathbb{C}}$ is of the form $f(z)=\frac{a \bar{z}+b}{c \bar{z}+d}$, where $a, b, c, d \in \mathbb{C}$, and $a d-b c=1$. Show that the opposite statement is false (that is give an example of a transformation of the above form which is not a reflection.)
Solution: First, assume that f is a reflection w.r.t a (genuine) line l. It is not hard to check that after applying a transformation of the form $g(z)=\alpha z+\beta$, where $|\alpha|=1$, we can "transform" l to the real-axis. From the previous question it follows that $g f g^{-1}$ is a reflection of the x-axis since $g(l)=\mathbb{R}$. In other words, $g f g^{-1}(z)=\bar{z}$, and hence $f(z)=\frac{\bar{\alpha} \bar{z}+\bar{\beta}-\beta}{\alpha}$. Moreover, note that since $|\alpha|=1$, the condition " $a d-b c=1$ " for the map f is satisfied. Next, assume that f is a reflection w.r.t a (genuine) circle S. We first "translate" S to the unit circle using the map $T(z)=(z-v) / R$, where R is the radius, and v is the center of the circle S. Again, using the previous question, one has that $T^{-1} f T$ is a reflection w.r.t the unit circle S^{1}, i.e, $T(z)=-1 / \bar{z}$. From this we can conclude by direct computation that $f(z)=\frac{v \bar{z}+\left(R^{2}-|v|^{2}\right)}{\bar{z}-\bar{v}}$. After resealing (both the numerator and a denominator) by $i R$, the claim follows.
To see that the opposite statement is false, one can consider the map $f(z)=-4 \bar{z}$ (by looking at the fixed points, it's clear that f is not a reflection).
6. Let $f \neq 1$ be a Möbius transformation. Show that the cross-ratio $D\left(z, f z, f^{2} z, f^{3} z\right)$ does not depend on the choice of the point z (whenever it is defined). Express this quantity in terms of $\operatorname{tr}^{2}(f)$, and explore the cases when f is of order 2 and 3.
7. Find all of the Möbius transformations that commute with $z \mapsto k z$ for a fixed k .

Solution: It is easy to check that the only Möbius transformations that commute with $z \mapsto k z$ are of the form $z \mapsto k^{\prime} z$.
8. Show that inversion maps any circle to another circle. Show that inversion preserves the magnitude of angles but reverses their orientation.
Solution: Consider a circle γ, with centre O and radius r. Recall that an inversion in γ is the transformation that sends a point X other than the origin to the point X^{\prime} on the line $O X$, on the same side of O as X, such that $\left|O X^{\prime}\right| \cdot|O X|=r^{2}$. Inversion clearly sends straight lines through O to themselves. It sends straight lines not through O to circles through O let l be a straight line not through O. Drop the perpendicular from O to l, and let the foot of this perpendicular be P. Let its image under the inversion be P^{\prime}. Let Q be another point on l, and let Q^{\prime} be its image. We know that $|O P| \cdot\left|O P^{\prime}\right|=|O Q| \cdot\left|O Q^{\prime}\right|=r^{2}$, so P, P^{\prime}, Q, and Q^{\prime} are concyclic. Since $\angle O P Q=\pi / 2$, we get that $\angle O Q^{\prime} P^{\prime}=\pi / 2$. Therefore, Q^{\prime} lies on the circle with diameter $O P^{\prime}$. This circle is therefore the image of l. (We think of O as the image of ∞ under the inversion.) Finally, given a circle S that does not pass through O, the inversion of S in γ is another circle. Let l_{1} be the line from O to the centre of S, and
let l_{2} be another line through O that meets S. Let P_{1} and P_{2} be the points where l_{1} meets S, with P_{1} nearer to O, and let Q_{1} and Q_{2} be the points where l_{2} meets S, with Q_{1} nearer to O. Let the images of these points be $P_{1}^{\prime}, P_{2}^{\prime}, Q_{1}^{\prime}$ and Q_{2}^{\prime} respectively. Since $\left|O P_{1}\right| \cdot\left|O P_{1}^{\prime}\right|=\left|O P_{2}\right| \cdot\left|O P_{2}^{\prime}\right|=r^{2}$, we get that $\frac{\left|O P_{2}^{\prime}\right|}{\left|O P_{1}\right|}=\frac{\left|O P_{1}^{\prime}\right|}{\left|O P_{2}\right|}=\frac{r^{2}}{\left|O P_{1}\right| \cdot\left|O P_{2}\right|}$. This means that the image of S is an enlargement of S about O. This sends circles to circles, so the image of S is a circle.

Recall that $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be orientation reversing or anticonformal if f preserves the cosine of the angle between two intersecting curves and reverses the orientation. A classical fact from complex analysis gives that f is orientation reversing if and only if \bar{f} is holomorphic. Combine this with the fact that any inversion is of the form $z \mapsto \frac{r^{2}}{\bar{z}-\bar{a}}+a$ completes the proof.

Another way to see that an inversion preserves the magnitude of an angle is the following: Recall from calculus that the angle between two circles $k_{i}\left(x^{2}+y^{2}\right)+a_{i} x+$ $b_{i} y+c_{i}=0$, for $i=1,2$ at a common point, $\left(x_{0}, y_{0}\right)$ is the angle between their (not necessarily unit) normals at that point, which are: $\left(2 k_{1} x_{0}+a_{1}, 2 k_{1} y_{0}+b_{1}\right)$, and $\left(2 k_{2} x_{0}+a_{2}, 2 k_{2} y_{0}+b_{2}\right)$. Hence the cosine of the angle between them is

$$
\cos =\frac{a_{1} a_{2}+b_{1} b_{2}-2 k_{1} c_{2}-2 k_{2} c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}-4 k_{1} c_{1}} \sqrt{a_{2}^{2}+b_{2}^{2}-4 k_{2} c_{2}}}
$$

Finally, check that if $k\left(x^{2}+y^{2}\right)+a x+b y+c=0$ is the equation of the circle, then the equation of its inverse is $c\left(x^{2}+y^{2}\right)+a x+b y+k=0$, and note that in the above expression for the cosine of the angle between two circles, it does not change if you swap k and c. This proves that inversion preserves the magnitude of angles.
9. Show that the composition of an even number of inversions is a Möbius transformation.

Solution: Let C be the particular inversion $z \rightarrow \bar{z}$. If Γ is a circle, we can find a Möbius transformation T that maps $\mathbb{R} \cup \infty$ onto Γ. Then inversion in Γ is given by $J=T \circ C \circ T^{-1}$. If $T(z)=\frac{a z+b}{c z+d}$, then $C \circ T \circ C(z)=\frac{\bar{a} z+\bar{b}}{\bar{c} z+\bar{d}}$. This shows that $C \circ T \circ C$ is a Möbius transformation. Hence

$$
C \circ J=C \circ T \circ C \circ T^{-1}=(C \circ T \circ C) \circ T^{-1}
$$

is a Möbius transformation, as is its inverse $J \circ C$. Now if J_{1}, J_{2} are two inversions we can write $J_{2} \circ J_{1}=\left(J_{2} \circ C\right) \circ\left(C \circ J_{1}\right)$ to show that $J_{2} \circ J_{1}$ is a Möbius transformation. In particular, the composition of an even number of inversions is a Möbius transformation.
10. Show that any loxodromic transformation is the composite of 4 inversions.

