Non-Euclidean Geometry (spring 2011)

Exercise No. 6 - Hyperbolic Geometry

1. Use what we did in class to prove that for any open ball $B \subset \overline{\mathbb{C}}$ and $z_{1}, z_{2} \in B$, there is a unique circle $D \subset \overline{\mathbb{C}}$ passing through z_{1} and z_{2} such that $D \perp \partial B$.
2. Let $\rho_{\triangle}, \rho_{\mathbb{H}}$ be the hyperbolic distances in the unit disc model $\triangle=\{|z|<1\}$, and in the upper-half plane model $\mathbb{H}=\{\operatorname{Im} z>0\}$ respectively. Show that

$$
\begin{gathered}
\cosh \rho_{\triangle}\left(z_{1}, z_{2}\right)=\frac{2\left|z_{1}-z_{2}\right|^{2}}{\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right)}+1, \text { for all } z_{1}, z_{2} \in \triangle, \\
\sinh \left(\frac{1}{2} \rho_{\mathbb{H}}\left(z_{1}, z_{2}\right)\right)=\frac{\left|z_{1}-z_{2}\right|}{2 \sqrt{\operatorname{Im} z_{1} \cdot \operatorname{Im} z_{2}}}, \text { for all } z_{1}, z_{2} \in \mathbb{H}
\end{gathered}
$$

3. Find the set of points in \triangle which are equidistant from points 0 and $1 / 3$ w.r.t. ρ_{\triangle}.
4. In the upper-half plane model, a hyperbolic circle of radius r with center z is the set $S(z, r)=\left\{w \in \mathbb{H}: \rho_{\mathbb{H}}(z, w)=r\right\}$. Show that $S(z, r)$ is necessarily a Euclidean circle.
5. Complete the details (if necessary) in the proofs we gave in class of the following: Let \triangle be a hyperbolic triangle with angles α, β, γ and corresponding side lengths a, b, c.
(i) The hyperbolic law of sines:

$$
\frac{\sinh a}{\sin \alpha}=\frac{\sinh b}{\sin \beta}=\frac{\sinh c}{\sin \gamma}
$$

(ii) The second hyperbolic law of cosines:

$$
\cos (\gamma)=-\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta) \cosh (c)
$$

Note that (ii) implies that the angles of a triangle determines its side lengths.
6. Show that there is no local isometry between the Euclidean and the hyperbolic planes.
7. Show that the bisectors of a hyperbolic triangle meet at a common point.
8. Show that the angle sum of a hyperbolic triangle is strictly less than π.
9. Show that in hyperbolic space there exists a unique perpendicular from a point P to a line L. This perpendicular minimizes the distance from P to L.
10. $\left(^{*}\right)$ Let $L, L^{\prime} \subset \mathbb{H}$ be disjoint lines which do not meet at ∞. Show that in contrast to Euclidean geometry, L, L^{\prime} have a unique common perpendicular which minimizes the distance between them. Moreover, (also in contrasts with Euclidean space), perpendicular projection onto a line L strictly decrease distances.

