
Non-Euclidean Geometry (spring 2011)

Exercise No. 6 - Partial Solutions

1. Use what we did in class to prove that for any open ball B ⊂ C and z1, z2 ∈ B, there

is a unique circle D ⊂ C passing through z1 and z2 such that D⊥∂B.

2. Let ρ4, ρH be the hyperbolic distances in the unit disc model 4 = {|z| < 1}, and in

the upper-half plane model H = {Imz > 0} respectively. Show that

cosh ρ4(z1, z2) =
2|z1 − z2|2

(1 − |z1|2)(1 − |z2|2)
+ 1, for all z1, z2 ∈ 4,

sinh
(1

2
ρH(z1, z2)

)

=
|z1 − z2|

2
√

Imz1 · Imz2
, for all z1, z2 ∈ H

Solution (sketch): In (H, ρH), for z and w on the imaginary axis we can check that

the result holds by a straightforward computation. If z, w ∈ H we can always find a

g ∈ Isom(H) such that g(z) and g(w) are on the imaginary axis. We can also check

by a straightforward computation that the quantity 2|z−w|2
(1−|z|2)(1−|w|2) is invariant under

elements of Isom(H). (Note: it is actually enough to check this for z → z + a, a ∈ R,

for z → cz, where c > 0 and for z → 1/z.)

A similar argument would work for (4, ρ4) where instead of the imaginary axis, we

will“move” the points to the x-axis by an isometry and check that the righthand side

of the formula about is invariant under the isometries of this model.

3. Find the set of points in 4 which are equidistant from points 0 and 1/3 w.r.t. ρ4.

4. In the upper-half plane model, a hyperbolic circle of radius r with center z is the set

S(z, r) = {w ∈ H : ρH(z, w) = r}. Show that S(z, r) is necessarily a Euclidean circle.

Hint: You can use question 2 above to show that in the Poincaré disk model 4, a ball

of radius r centered at 0 is a Euclidean ball centered at 0 and radius tanh(r/2) < 1.

Next, use isometries of this model to show that this results for any ball. Finally,

”translate” these results to the upper-half plane model.

5. Complete the details (if necessary) in the proofs we gave in class of the following: Let

4 be a hyperbolic triangle with angles α, β, γ and corresponding side lengths a, b, c.

(i) The hyperbolic law of sines:

sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ
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(ii) The second hyperbolic law of cosines:

cos(γ) = − cos(α) cos(β) + sin(α) sin(β) cosh(c)

Note that (ii) implies that the angles of a triangle determines its side lengths.

Solution: First, in order to prove the hyperbolic sines law, we consider the quantity
sinh2 C
sin2 γ

> 0. Writing coshA = a, cosh B = b and coshC = c, we have from the 1st law

of cosines that:

sin2 γ = 1 − cos2 γ = 1 −
( ab − c

sinhA sinhB

)2

=
sinh2 A sinh2 B − (ab − c)2

sinh2 A sinh2 B

=
(a2 − 1)(b2 − 1) − a2b2 − c2 + 2abc

sinh2 A sinh2 B

=
1 − a2 − b2 − c2 + 2abc

sinh2 A sinh2 B

=
1 − cosh2 A cosh2 B − cosh2 C + 2 cosh A cosh B cosh C

sinh2 A sinh2 B

Hence we conclude that

sin2 γ

sinh2 C
=

1 − cosh2 A cosh2 B − cosh2 C + 2 cosh A cosh B cosh C

sinh2 A sinh2 B sinh2 C

The right hand side remains unchanged after permuting A,B,C and α, β, γ respec-

tively, and so the left hand side also remains unchanged. This gives us our result.

Next we turn to prove the 2nd Hyperbolic Law of Cosines. From the 1st law of cosines

we have

cosα =
coshB cosh C − coshA

sinhB sinhC
=

coshB coshC − coshA
√

(cosh2 B − 1)(cosh2 C − 1)

Since sinα =
√

1 − cos2 α, one has

sinα =

√

1 − (coshB coshC − coshA)2

(cosh2 B − 1)(cosh2 C − 1)

=

√

(cosh2 B − 1)(cosh2 C − 1) − (coshB coshC − coshA)2

(cosh2 B − 1)(cosh2 C − 1)

=

√

1 + 2 cosh A coshB cosh C − cosh2 A − cosh2 B − cosh2 C

(cosh2 B − 1)(cosh2 C − 1)

Similarly we have

cosβ =
cosh A coshC − coshB

√

(cosh2 A − 1)(cosh2 C − 1)
,
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sinβ =

√

1 + 2 cosh A cosh B coshC − cosh2 A − cosh2 B − cosh2 C
√

(cosh2 A − 1)(cosh2 C − 1)
,

cos γ =
cosh A coshB − coshC

√

(cosh2 A − 1)(cosh2 B − 1)
.

From this we see that:

− cos γ + cos α cos β

sinα sinβ
=

(bc − a)(ac − b) + (ab − c)(c2 − 1)

1 + 2abc − a2 − b2 − c2
= c,

where cosh A = a, cosh B = b and coshC = c. This completes the proof.

6. Show that there is no local isometry between the Euclidean and the hyperbolic planes.

Solution: Proof by contradiction: Let f be an isometry between a domain in the

hyperbolic plane U ∈ H, and a domain in the Euclidean plane V . Let 4ABC be an

Equilateral triangle in U with side length a, and let 4f(A)f(B)f(C) be its image,

an Equilateral triangle with sidelength a in V . Let E be the midpoint of the edge

AC. Since f is an isometry, f(E) is the mid-point of f(A)f(C). Hence, the distance

between A and E must be
√

3
2 a (since f is an isometry). However, from the hyperbolic

cosines theorem in the triangle ABE we conclude that

cosh a = cosh(a/2) cosh(

√
3

2
a)−sinh(a/2) sinh(

√
3

2
a) cos(π/2) = cosh(a/2) cosh(

√
3

2
a)

Hence, for every a > ε > 0 one has cosh(ε) = cosh(ε/2) cosh(
√

3
2 ε). Now we can use

Taylor Expansion to obtain a contradiction (as we did in the spherical case).

7. Show that the bisectors of a hyperbolic triangle meet at a common point.

Solution: see the solution to Daf Targil 7.

8. Show that the angle sum of a hyperbolic triangle is strictly less than π.

Solution: Put the hyperbolic triangle 4 in D (Poincaré unit-disk model) with one

vertex at the center O. The sides through O are radii. If P, P ′ are the other two ver-

tices, it is easy to see that the Euclidean triangle with vertices OPP ′ strictly contains

4, and in particular, that the ∠OPP ′, ∠OP ′P in 4 are less than the corresponding

Euclidean angles, from which the result follows.

9. Show that in hyperbolic space there exists a unique perpendicular from a point P to

a line L. This perpendicular minimizes the distance from P to L.

Solution: Place P at O ∈ D (Poincaré disk model). It is clear from Euclidean

geometry that there is a unique radial line PQ perpendicular to the hyperbolic line

L. The relation dD(P,Q) < dD(P,Q′) follows since from Euclidean, any other point

Q′ ∈ L lies outside the hyperbolic circle center 0 and radius |PQ|.
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10. (*) Let L,L′ ⊂ H be disjoint lines which do not meet at ∞. Show that in contrast

to Euclidean geometry, L,L′ have a unique common perpendicular which minimizes

the distance between them. Moreover, (also in contrasts with Euclidean space), per-

pendicular projection onto a line L strictly decrease distances.

Solution: Existence: We arrange the line L to be the imaginary axis in H. We may

assume (explain why??) that L′ is a Euclidean semicircle with centered on the real

axis (and let P and Q be the intersection of L′ with the real axis). It follows from

Euclidean geometry that the circle with center O, and radius s, where s2 = |OP ||OQ|,
cuts L′ orthogonally.

Uniqueness: Any other common perpendicular would produce either a quadrilateral

whose angle sum is 2π or a triangle of angle sum larger then π. Both of these cases

are impossible by what we proved above.

The common perpendicular minimizes distance.let PP ′ be the common perpendicular

from L to L′, from the previous question it follows that |PP ′| < |PQ| unless ∠Q = π/2,

in which case Q = P ′.
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