Non-Euclidean Geometry (spring 2011)

Exercise No. 7 - Hyperbolic Geometry

1. Show that the map $z \mapsto \frac{z-a}{\bar{a} z-1}$ is an hyperbolic isometry of the Poincaré disk model \triangle that sends the point a to the origin, and moreover, it is its own inverse.
2. $\left(^{*}\right)$ Show that the group $\mathrm{Iso}^{+}(\mathbb{H})$ (resp. $\mathrm{Iso}^{+}(\mathbb{D})$) acts transitively on equidistance pairs of points in $\mathbb{H}($ resp. $\mathbb{D})$, as well as on ordered triples in $\partial \mathbb{H}$ (resp. $\partial \mathbb{D})$.
3. Given two hyperbolic triangles T_{1}, T_{2} in \triangle with interior angles α, β, γ. Show that there is a hyperbolic isometry taking T_{1} to T_{2}.
4. Show that any two triply asymptotic triangles (triangles with all 3 vertices on the boundary of the disc) are congruent.
5. Show that a hyperbolic circle with hyperbolic radius r has length $2 \pi \sinh r$ and encloses a disc of hyperbolic area $4 \pi \sinh ^{2} \frac{1}{2} r$. Sketch these as functions of r.
For distinct points A, B, X on an hyperbolic line, define their "hyperbolic ratio" by

$$
h(A, X, B):= \begin{cases}\sinh (d(A, X)) / \sinh (d(X, B)) & \text { if } X \text { is between } A \text { and } B, \\ \sinh (d(A, X)) / \sinh (d(X, B)) & \text { otherwise. }\end{cases}
$$

6. (Menelaus's theorem for hyperbolic triangles) If L is an hyperbolic line not through any vertex of an hyperbolic triangle $A B C$ such that L meets $B C$ in $Q, A C$ in R, and $A B$ in P, then $h(A, P, B) h(B, Q, C) h(C, R, A)=-1$. Moreover, (the converse of Menelaus's theorem for hyperbolic triangles): If P lies on the hyperbolic line $A B, Q$ on $B C$, and R on $C A$ such that $h(A, P, B) h(B, Q, C) h(C, R, A)=-1$, then P, Q and R are hyperbolic collinear.
7. (Ceva's Theorem for Hyperbolic Triangles) If X is a point not on any side of an hyperbolic triangle $A B C$ such that $A X$ and $B C$ meet in $Q, B X$ and $A C$ in R, and $C X$ and $A B$ in P, then $h(A, P, B) h(B, Q, C) h(C, R, A)=1$. Moreover, (the converse of Ceva's theorem for hyperbolic triangles): If P lies on the hyperbolic line $A B, Q$ on $B C$, and R on $C A$ such that $h(A, P, B) h(B, Q, C) h(C, R, A)=1$, and two of the hyperbolic lines $C P, B R$ and $A Q$ meet, then all three are concurrent.
8. Use the above to show that: 1) The hyperbolic medians of a hyperbolic triangle are concurrent. 2) The internal angle bisectors of a hyperbolic triangle are concurrent. 3) If any two hyperbolic altitudes of a hyperbolic triangle meet, then the hyperbolic altitudes are concurrent.
