Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 7 - Hyperbolic Geometry

1. Show that the map $z \mapsto \frac{z-a}{\bar{a} z-1}$ is an hyperbolic isometry of the Poincaré disk model \triangle that sends the point a to the origin, and moreover, it is its own inverse.
2. $\left(^{*}\right)$ Show that the group $\mathrm{Iso}^{+}(\mathbb{H})$ (resp. $\mathrm{Iso}^{+}(\mathbb{D})$) acts transitively on equidistance pairs of points in $\mathbb{H}($ resp. $\mathbb{D})$, as well as on ordered triples in $\partial \mathbb{H}$ (resp. $\partial \mathbb{D}$).

Solution: We shall proof this for \mathbb{H} (in order to prove the result in \mathbb{D} you can either make direct calculations or apply the Cayley transformation) (i) We have to show that if $P, P^{\prime}, Q, Q^{\prime} \in \mathbb{H}$ with $d_{\mathbb{H}}\left(P, P^{\prime}\right)=d_{\mathbb{H}}\left(Q, Q^{\prime}\right)$, then there exists an isometry $T \in$ Isom ${ }^{+}(\mathbb{H})$ such that $T(P)=P^{\prime}$ and $T(Q)=Q^{\prime}$. It will be sufficient to prove this for the case in which $Q=i$ and $Q^{\prime}=i \exp \left(d_{\mathbb{H}}\left(P, P^{\prime}\right)\right)$ (Why?). Let S_{1} be the map which maps the semicircle C with center on $\partial \mathbb{H}$ to the imaginary axis. Next let S_{2} be the map $z \mapsto z / a$ which maps the imaginary axis to itself sending $a i$ to i, so in particular $S_{2} S_{1}(P)=i$. Since $S_{2} S_{1}$ is an isometry we have $d_{\mathbb{H}}\left(S_{2} S_{1}(P), S_{2} S_{1}\left(P^{\prime}\right)\right)=d_{\mathbb{H}}\left(P, P^{\prime}\right)$, so that $d_{\mathbb{H}}\left(i, S_{2} S_{1}\left(P^{\prime}\right)\right)=d_{\mathbb{H}}\left(P, P^{\prime}\right)$ and hence $\left.S_{2} S_{1}\left(P^{\prime}\right)=\operatorname{iexp}\left(\pm d_{\mathbb{H}}\right)\left(P, P^{\prime}\right)\right)$. If $S_{2} S_{1}\left(P^{\prime}\right)=\operatorname{iexp}\left(d_{\mathbb{H}}\left(P, P^{\prime}\right)\right)=Q^{\prime}$ we are done taking $T=S_{2} S_{1}$. Otherwise, apply $S_{3}: z \mapsto-1 / z$ which fixes $Q=i$ and takes it to i / t for any $t>0$ (note that $S_{3} \in$ $S L(2, \mathbb{R})$). Then $S_{3} S_{2} S_{1}(P)=Q$ and $S_{3} S_{2} S_{1}\left(P^{\prime}\right)=Q^{\prime}$ so we are done.
(ii) Say $\xi_{1}, \xi_{2}, \xi_{3} \in \mathbb{R} \cup \infty$. The map $T: z \mapsto\left[z, \xi_{1}, \xi_{2}, \xi_{3}\right]=\frac{z-\xi_{1}}{z-\xi_{2}} \cdot \frac{\xi_{3}-\xi_{2}}{\xi_{3}-\xi_{1}}$ carries $\xi_{1} \mapsto 0, \xi_{2} \mapsto \infty, \xi_{3} \mapsto 1$. Now $\operatorname{det}(T)=\frac{\left(\xi_{3}-\xi_{2}\right)\left(\xi_{1}-\xi_{2}\right)}{\xi_{3}-\xi_{1}}$, so $\operatorname{det}(T)>0$ if and only if the two triples $(0, \infty, 1)$ and $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ have the same cyclic order on $\widehat{\mathbb{R}}$. Then we can normalize to get $T \in S L(2, \mathbb{R})$.
3. Given two hyperbolic triangles T_{1}, T_{2} in \triangle with interior angles α, β, γ. Show that there is a hyperbolic isometry taking T_{1} to T_{2}.
Solution: Consider two triangles of angles α, β, γ at vertices A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$. Applying an isometry, we may arrange the triangles so that $A=A^{\prime}$ and so that the sides $A B, A B^{\prime}$ are contained in a common line through A, as are $A C, A C^{\prime}$. Suppose without loss of generality that $|A B| \leq\left|A B^{\prime}\right|$. If $|A C| \leq\left|A C^{\prime}\right|$ then either triangle $A B C$ is strictly contained inside triangle $A B^{\prime} C^{\prime}$, which is impossible because they have the same area, or $B=B^{\prime}, C=C^{\prime}$. If $|A C|>\left|A C^{\prime}\right|$ then the lines $B C$ and $B^{\prime} C^{\prime}$ cross at a point X say. Then the angle sum of triangle $B X B^{\prime}$ is at least $\beta+(\pi-\beta)$, which is impossible.
4. Show that any two triply asymptotic triangles (triangles with all 3 vertices on the boundary of the disc) are congruent.
5. Show that a hyperbolic circle with hyperbolic radius r has length $2 \pi \sinh r$ and encloses a disc of hyperbolic area $4 \pi \sinh ^{2} \frac{1}{2} r$. Sketch these as functions of r.
Solution: The solution was given in class.
For distinct points A, B, X on an hyperbolic line, define their "hyperbolic ratio" by

$$
h(A, X, B):= \begin{cases}\sinh (d(A, X)) / \sinh (d(X, B)) & \text { if } X \text { is between } A \text { and } B, \\ \sinh (d(A, X)) / \sinh (d(X, B)) & \text { otherwise. }\end{cases}
$$

Before we prove the next claims, note (check this!) the following basic Properties of the Hyperbolic Ratio:
(1) $h(A, X, B)=-h(B, X, A)$,
(2) if X is between A and B, then $h(A, X, B) \in(0,1)$,
(3) if X is on $A B$, beyond B, then $h(A, X, B) \in(-\infty,-1)$,
(4) if X is on $A B$, beyond A, then $h(A, X, B) \in(-1,0)$.
6. (Menelaus's theorem for hyperbolic triangles) If L is an hyperbolic line not through any vertex of an hyperbolic triangle $A B C$ such that L meets $B C$ in $Q, A C$ in R, and $A B$ in P, then $h(A, P, B) h(B, Q, C) h(C, R, A)=-1$. Moreover, (the converse of Menelaus's theorem for hyperbolic triangles): If P lies on the hyperbolic line $A B, Q$ on $B C$, and R on $C A$ such that $h(A, P, B) h(B, Q, C) h(C, R, A)=-1$, then P, Q and R are hyperbolic collinear.
Solution: We start with the first part: a little consideration shows that, if we change the labels of the vertices, then either the factors are simply permuted, or are inverted and permuted. Since our aim is to show that the product is -1 , the labelling of the vertices of the hyperbolic-triangle is immaterial. It follows that there are two cases, depending on the position of the hyperbolic line $L=P Q R$ relative to the Hyperbolic triangle. Observe that either one cut is external, or all three are external. It follows that the product of the ratios is negative. It is therefore enough to show that the absolute value is +1 .

Case I: (one cut is external - the point Q) Applying the Hyperbolic Sine Rule to the hyperbolic triangle $A P R$, we obtain

$$
\sinh (d(A, R)) / \sin (\angle A P R))=\sinh (d(A, P)) / \sin (\angle A R P)
$$

Similarly, from the hyperbolic triangles $B P Q$ and $C R Q$, one has

$$
\sinh (d(B, Q)) / \sin (\angle B P Q))=\sinh (d(B, P)) / \sin (\angle B Q P)
$$

and

$$
\sinh (d(C, R)) / \sin (\angle C Q R))=\sinh (d(C, Q)) / \sin (\angle C R Q) .
$$

Observe that: $\angle A P R=\angle B P Q$, so $\sin (\angle A P R)=\sin (\angle B P Q), \angle B Q P=\angle C Q R$, so $\sin (\angle B Q P)=\sin (\angle C Q R)$, and $\angle A R P=\pi-\angle C R Q$, so $\sin (\angle A R P)=\sin (\angle C R Q)$. Some elementary algebra now yields $|h(A, P, B) h(B, Q, C) h(C, R, A)|=1$.

Case II: (the points P, Q, R are all external): This follows in a similar way, with minor changes in the argument showing that the sines of the relevant angles are equal.
Before we continut to prove the other direction we shall need the following observation:
Lemma(the Hyperbolic Ratio Theorem): if X and Y are points on the hyperbolic line $A B$ such that $h(A, X, B)=h(A, Y, B)$, then $X=Y$.

Proof of the Lemma: There are three cases, depending on whether the common hyperbolic ratio is in $(0,1),(-\infty,-1)$ or $(-1,0)$. Case I (ratio in $(0,1))$: Then X and Y lie between A and B. Interchanging the labels X and Y if necessary, we may assume that Y is between X and B. From the triangle inequality, one has, if $X \neq Y$, then $d(A, Y)=d(A, X)+d(X, Y)>d(A, X)$, and $d(Y, B)=d(X, B)-d(X, Y)<d(X, B)$. Since sinh is increasing, this gives $h(A, Y, B)>h(A, X, B)$. Thus, if $h(A, X, B)=$ $h(A, Y, B)$, then $X=Y$.

Case II (Ratio in $(-\infty,-1)$): Then X and Y lie beyond B. Interchanging the labels X and Y if necessary, we may assume that Y lies beyond X. By the triangle inequality, we have, if $X \neq Y, d(A, Y)=d(A, X)+d(X, Y)=\alpha+\delta$, say, and $d(B, Y)=d(B, X)+d(X, Y)=\beta+\delta$, say. Thus, if $h(A, X, B)=h(A, Y, B)$, then, $-\sinh (d(A, X))) / \sinh (d(X, B))=-\sinh (d(A, Y)) / \sinh (d(Y, B))$. So that

$$
0=\sinh (\alpha+\delta) \sinh (\beta)-\sinh (\beta+\delta) \sinh (\alpha)=\sinh (\delta) \sinh (\beta-\alpha)
$$

Thus $\delta=0$, or $\alpha=\beta$, either of which implies that $X=Y$.
Case III (Ratio in $(-1,0)$): This follows from the previous case as $h(A, Z, B)=$ $1 / h(B, Z, A)$ for all Z.
Next we turn to prove the converse of Menelaus's theorem for hyperbolic triangles:
A little consideration shows that, if we change the labels of the vertices, then either the factors are simply permuted, or are inverted and permuted. Since our hypothesis is that the product is -1 , the labelling of the vertices of the hyperbolic triangle is immaterial. The key is to show that an hyperbolic line through two of P, Q, R cuts the third side of the hyperbolic triangle. We apply Menelaus's Theorem to this line. Since the product is negative, at least one of the cuts is external. Relabelling if necessary, we may assume that Q lies beyond C on $B C$.
If P lies on the hyperbolic ray $A B$, then the hyperbolic line $Q P$ cuts $A C$, at R^{*} say. Applying Menelaus's theorem to the hyperbolic triangle ABC, cut by $P Q R^{*}$, we get $h(A, P, B) h(B, Q, C) h\left(C, R^{*}, A\right)=-1$. Comparing this with the hypothesis, $h\left(C, R^{*}, A\right)=h(C, R, A)$. Then, by the Hyperbolic Ratio Theorem, $R=R^{*}$, so P, Q, R are collinear.

Note that there are two other possibilities: If R lies on the hyperbolic ray $C A$, then the hyperbolic line $Q R$ cuts $A B$, at P^{*} say. The only other possibility is that P lies beyond A (e.g. at P^{\prime}), and that R lies beyond C (e.g. at R^{\prime}). Then $P^{\prime} R^{\prime}$ cuts $B C$, at Q^{*} say. In each case a similar application of Menelaus gives the result.
7. (Ceva's Theorem for Hyperbolic Triangles) If X is a point not on any side of an hyperbolic triangle $A B C$ such that $A X$ and $B C$ meet in $Q, B X$ and $A C$ in R, and
$C X$ and $A B$ in P, then $h(A, P, B) h(B, Q, C) h(C, R, A)=1$. Moreover, (the converse of Ceva's theorem for hyperbolic triangles): If P lies on the hyperbolic line $A B, Q$ on $B C$, and R on $C A$ such that $h(A, P, B) h(B, Q, C) h(C, R, A)=1$, and two of the hyperbolic lines $C P, B R$ and $A Q$ meet, then all three are concurrent.
Solution: A little consideration shows that, if we change the labels of the vertices, then either the factors are simply permuted, or are inverted and permuted. Since our aim is to show that the product is 1 , the labelling of the vertices of the hyperbolic triangle is immaterial. It follows that there are essentially three cases, depending upon the position of X relative to A :

Case I (X is in between A and Q inside the triangle): Applying Menelaus's Theorem to the hyperbolic triangle $A Q C$, cut by $B X R$, gives $|h(A, X, Q) h(Q, B, C) h(C, R, A)|=$ 1 ,so that
$(\sinh (d(A, X) / \sinh (d(X, Q))(\sinh (d(Q, B) / \sinh (d(B, C))(\sinh (d(C, R) / \sinh (d(R, A))=1$
Similarly, applying Menelaus's Theorem to the hyperbolic triangle $A Q B$, cut by $C X P$ gives
$(\sinh (d(A, X) / \sinh (d(X, Q))(\sinh (d(Q, C) / \sinh (d(C, B))(\sinh (d(B, P) / \sinh (d(P, A))=1$
Dividing these two expressions and cancelling common factors, we get
$(\sinh (d(A, P) / \sinh (d(P, B))(\sinh (d(B, Q) / \sinh (d(Q, C))(\sinh (d(C, R) / \sinh (d(R, A))=1$
Since, in this case, the sides are cut internally, $h(A, P, B) h(B, Q, C) h(C, R, A)=1$, as required.
The other two cases are almost identical and are left as an exercisc.
Next we prove the Converse of Ceva's Theorem: a little consideration shows that, if we change the labels of the vertices, then either the factors are simply permuted, or are inverted and permuted. Since our hypothesis is that the product is 1 , the labelling of the vertices of the hyperbolic triangle is immaterial. The key is to show that the hyperbolic line through the intersection X of two of $C P, A Q, B R$ and the third vertex cuts the third side of the hyperbolic triangle. We apply Ceva's Theorem to this point X. If P lies between A and B, then $C P$ cuts the hyperbolic segment $A Q$, at X say. Also, $B X$ cuts the hyperbolic segment $A C$, at R^{*},say. Applying Ceva's Theorem to the hyperbolic triangle $A B C$, and the point X, we get $h(A, P, B) h(B, Q, C) h(C, R, A)=$ 1. Comparing this with the hypothesis, $h(C, R, A)=h\left(C, R^{*}, A\right)$. By the Hyperbolic Ratio Theorem (the lemma above), $R=R^{*}$, so $A Q, B R, C P$ concur at X. A similar argument applies if R lies between A and C.
Now suppose that P lies beyond B, and R beyond C. Then $B R$ and $C P$ meet at X, which lies within angle $B A C$. Now $A X$ cuts the hyperbolic segment $B C$ at Q^{*}, say. It now follows as before that $Q=Q^{*}$, so the hyperbolic lines are concurrent.

Next suppose that P lies beyond B, and R beyond A. Then the hyperbolic ray $R B$ enters angle $P B C$ at B, and so cuts $C P$ at X, say. Since X lies within the
angle $B A C, A X$ cuts the segment $B C$, at Q^{*}, say. It now follows as before that $Q=Q^{*}$, so the lines are concurrent. The case where P is beyond A, and R beyond C is similar. Note that, in all of the above cases, the lines AQ,BR,CP must meet. We are left with cases where both P and R lie beyond A. The hypotheses include the condition that at least two of $A Q, B R, C P$ meet. Suppose first that $B R$ and $C P$ meet, at X, say. Then X lies within angle $R A P$, so $A X$ meets the segment $B C$, at Q^{*}, say. It now follows as before that $Q=Q *$, so the lines are concurrent. Suppose next that $B R$ and $A Q$ meet, at X, say. Now X and C lie on opposite sides of $A B$, so $C X$ meets $A B$, at P^{*}, say. Much as before, we deduce that $P=P^{*}$, so the lines are concurrent. The case where $C P$ and $A Q$ meet is similar to the previous case.
8. Use the above to show that: 1) The hyperbolic medians of a hyperbolic triangle are concurrent. 2) The internal angle bisectors of a hyperbolic triangle are concurrent. 3) If any two hyperbolic altitudes of a hyperbolic triangle meet, then the hyperbolic altitudes are concurrent.
Solution: (i) The Medians Theorem for Hyperbolic Triangles: i.e., The hyperbolic medians of a hyperbolic triangle are concurrent:

Let $A B C$ be an hyperbolic triangle, and let the hyperbolic medians be $A Q, B R$ and $C P$. Since P is the hyperbolic midpoint of $B C$, one has $h(A, P, B)=\sinh (d(A, P)) / \sinh (d(P, B))=$ 1, and similarly $h(B, Q, C)=h(C, R, A)=1$. Hence $h(A, P, B) h(B, Q, C) h(C, R, A)=$ 1. The h-medians all lie within the hyperbolic triangle, so any two must meet. Thus, by the Converse of Ceva's Theorem, the hyperbolic medians $A Q, B R$ and $C P$ are collinear.
(ii) The Angle Bisectors Theorem for Hyperbolic Triangles: The internal angle bisectors of a hyperbolic triangle are concurrent:
Let $A B C$ be an hyperbolic triangle, and let the angle bisectors be $A Q, B R$ and $C P$. By the Hyperbolic Sine Rule applied to the hyperbolic triangles $A Q C$ and $A Q B$,

$$
\sinh (d(Q, C)) / \sin (\angle Q A C)=\sinh (d(A, Q)) / \sin (\angle A C Q)
$$

and

$$
\sinh (d(B, Q)) / \sin (\angle Q A B)=\sinh (d(A, Q)) / \sin (\angle A B Q)
$$

As $A Q$ bisects $\angle B A C, \angle Q A C=\angle Q A B$, so these equations yield $h(B, C, Q)=$ $\sin (\angle A C B) / \sin (\angle A B C)$. SImilarly, using the bisectors $B R$ and $C P$, one get $h(A, B, P)=$ $\sin (\angle C B A) / \sin (\angle C A B)$, and $h(C, A, R)=\sin (\angle B A C) / \sin (\angle B C A)$. Multiplying the ratios, $h(A, B, P) h(B, C, Q) h(C, A, R)=1$. The angle bisectors all lie within the triangle, so any two must meet. Thus, by the Converse of Ceva's Theorem, the bisectors $A Q, B R$ and $C P$ are collinear.

