
Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 7 - Hyperbolic Geometry

1. Show that the map z 7→ z−a
az−1 is an hyperbolic isometry of the Poincaré disk model 4

that sends the point a to the origin, and moreover, it is its own inverse.

2. (*) Show that the group Iso+(H) (resp. Iso+(D)) acts transitively on equidistance

pairs of points in H (resp. D), as well as on ordered triples in ∂H (resp. ∂D).

Solution: We shall proof this for H (in order to prove the result in D you can either

make direct calculations or apply the Cayley transformation) (i) We have to show

that if P, P ′, Q,Q′ ∈ H with dH(P, P ′) = dH(Q,Q′), then there exists an isometry T ∈

Isom+(H) such that T (P ) = P ′ and T (Q) = Q′. It will be sufficient to prove this for

the case in which Q = i and Q′ = iexp(dH(P, P ′)) (Why?). Let S1 be the map which

maps the semicircle C with center on ∂H to the imaginary axis. Next let S2 be the

map z 7→ z/a which maps the imaginary axis to itself sending ai to i, so in particular

S2S1(P ) = i. Since S2S1 is an isometry we have dH(S2S1(P ), S2S1(P
′)) = dH(P, P ′),

so that dH(i, S2S1(P
′)) = dH(P, P ′) and hence S2S1(P

′) = iexp(±dH)(P, P ′)). If

S2S1(P
′) = iexp(dH(P, P ′)) = Q′ we are done taking T = S2S1. Otherwise, apply

S3 : z 7→ −1/z which fixesQ = i and takes it to i/t for any t > 0 (note that S3 ∈

SL(2, R)). Then S3S2S1(P ) = Q and S3S2S1(P
′) = Q′ so we are done.

(ii) Say ξ1, ξ2, ξ3 ∈ R ∪ ∞. The map T : z 7→ [z, ξ1, ξ2, ξ3] = z−ξ1
z−ξ2

· ξ3−ξ2
ξ3−ξ1

carries

ξ1 7→ 0, ξ2 7→ ∞, ξ3 7→ 1. Now det(T ) = (ξ3−ξ2)(ξ1−ξ2)
ξ3−ξ1

, so det(T ) > 0 if and only if

the two triples (0,∞, 1) and (ξ1, ξ2, ξ3) have the same cyclic order on R̂. Then we can

normalize to get T ∈ SL(2, R).

3. Given two hyperbolic triangles T1, T2 in 4 with interior angles α, β, γ. Show that

there is a hyperbolic isometry taking T1 to T2.

Solution: Consider two triangles of angles α, β, γ at vertices A,B,C and A′, B′, C ′.

Applying an isometry, we may arrange the triangles so that A = A′ and so that the

sides AB,AB ′ are contained in a common line through A, as are AC,AC ′. Suppose

without loss of generality that |AB| ≤ |AB ′|. If |AC| ≤ |AC ′| then either triangle

ABC is strictly contained inside triangle AB ′C ′, which is impossible because they

have the same area, or B = B ′, C = C ′. If |AC| > |AC ′| then the lines BC and B ′C ′

cross at a point X say. Then the angle sum of triangle BXB ′ is at least β + (π − β)

, which is impossible.

4. Show that any two triply asymptotic triangles (triangles with all 3 vertices on the

boundary of the disc) are congruent.
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5. Show that a hyperbolic circle with hyperbolic radius r has length 2π sinh r and encloses

a disc of hyperbolic area 4π sinh2 1
2r. Sketch these as functions of r.

Solution: The solution was given in class.

For distinct points A,B,X on an hyperbolic line, define their “hyperbolic ratio“ by

h(A,X,B) :=

{
sinh(d(A,X))/ sinh(d(X,B)) if X is between A and B,

sinh(d(A,X))/ sinh(d(X,B)) otherwise.

Before we prove the next claims, note (check this!) the following basic

Properties of the Hyperbolic Ratio:

(1) h(A,X,B) = −h(B,X,A),

(2) if X is between A and B, then h(A,X,B) ∈ (0, 1),

(3) if X is on AB, beyond B, then h(A,X,B) ∈ (−∞,−1),

(4) if X is on AB, beyond A, then h(A,X,B) ∈ (−1, 0).

6. (Menelaus’s theorem for hyperbolic triangles) If L is an hyperbolic line not through

any vertex of an hyperbolic triangle ABC such that L meets BC in Q, AC in R,

and AB in P , then h(A,P,B)h(B,Q,C)h(C,R,A) = −1. Moreover, (the converse of

Menelaus’s theorem for hyperbolic triangles): If P lies on the hyperbolic line AB, Q

on BC, and R on CA such that h(A,P,B)h(B,Q,C)h(C,R,A) = −1, then P, Q and

R are hyperbolic collinear.

Solution: We start with the first part: a little consideration shows that, if we change

the labels of the vertices, then either the factors are simply permuted, or are inverted

and permuted. Since our aim is to show that the product is −1, the labelling of the

vertices of the hyperbolic-triangle is immaterial. It follows that there are two cases,

depending on the position of the hyperbolic line L = PQR relative to the Hyperbolic

triangle. Observe that either one cut is external, or all three are external. It follows

that the product of the ratios is negative. It is therefore enough to show that the

absolute value is +1.

Case I: (one cut is external - the point Q) Applying the Hyperbolic Sine Rule

to the hyperbolic triangle APR, we obtain

sinh(d(A,R))/ sin(∠APR)) = sinh(d(A,P ))/ sin(∠ARP ).

Similarly, from the hyperbolic triangles BPQ and CRQ, one has

sinh(d(B,Q))/ sin(∠BPQ)) = sinh(d(B,P ))/ sin(∠BQP ),

and

sinh(d(C,R))/ sin(∠CQR)) = sinh(d(C,Q))/ sin(∠CRQ).

Observe that: ∠APR = ∠BPQ, so sin(∠APR) = sin(∠BPQ), , ∠BQP = ∠CQR, so

sin(∠BQP ) = sin(∠CQR), and ∠ARP = π − ∠CRQ, so sin(∠ARP ) = sin(∠CRQ).

Some elementary algebra now yields |h(A,P,B)h(B,Q,C)h(C,R,A)| = 1.
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Case II: (the points P,Q,R are all external): This follows in a similar way, with

minor changes in the argument showing that the sines of the relevant angles are equal.

Before we continut to prove the other direction we shall need the following observation:

Lemma( the Hyperbolic Ratio Theorem): if X and Y are points on the hyper-

bolic line AB such that h(A,X,B) = h(A, Y,B), then X = Y .

Proof of the Lemma: There are three cases, depending on whether the common

hyperbolic ratio is in (0, 1), (−∞,−1) or (−1, 0). Case I (ratio in (0, 1)): Then X and

Y lie between A and B. Interchanging the labels X and Y if necessary, we may assume

that Y is between X and B. From the triangle inequality, one has, if X 6= Y , then

d(A, Y ) = d(A,X)+d(X,Y ) > d(A,X), and d(Y,B) = d(X,B)−d(X,Y ) < d(X,B).

Since sinh is increasing, this gives h(A, Y,B) > h(A,X,B). Thus, if h(A,X,B) =

h(A, Y,B), then X = Y .

Case II (Ratio in (−∞,−1)): Then X and Y lie beyond B. Interchanging the la-

bels X and Y if necessary, we may assume that Y lies beyond X. By the triangle

inequality, we have, if X 6= Y , d(A, Y ) = d(A,X) + d(X,Y ) = α + δ, say, and

d(B, Y ) = d(B,X) + d(X,Y ) = β + δ, say. Thus, if h(A,X,B) = h(A, Y,B), then,

− sinh(d(A,X)))/ sinh(d(X,B)) = − sinh(d(A, Y ))/ sinh(d(Y,B)). So that

0 = sinh(α + δ) sinh(β) − sinh(β + δ) sinh(α) = sinh(δ) sinh(β − α)

Thus δ = 0, or α = β, either of which implies that X = Y .

Case III (Ratio in (−1, 0)): This follows from the previous case as h(A,Z,B) =

1/h(B,Z,A) for all Z.

Next we turn to prove the converse of Menelaus’s theorem for hyperbolic triangles:

A little consideration shows that, if we change the labels of the vertices, then either

the factors are simply permuted, or are inverted and permuted. Since our hypothesis

is that the product is −1, the labelling of the vertices of the hyperbolic triangle is

immaterial. The key is to show that an hyperbolic line through two of P,Q,R cuts the

third side of the hyperbolic triangle. We apply Menelaus’s Theorem to this line. Since

the product is negative, at least one of the cuts is external. Relabelling if necessary,

we may assume that Q lies beyond C on BC.

If P lies on the hyperbolic ray AB, then the hyperbolic line QP cuts AC, at R∗

say. Applying Menelaus’s theorem to the hyperbolic triangle ABC, cut by PQR∗,

we get h(A,P,B)h(B,Q,C)h(C,R∗ , A) = −1. Comparing this with the hypothesis,

h(C,R∗, A) = h(C,R,A). Then, by the Hyperbolic Ratio Theorem, R = R∗, so

P,Q,R are collinear.

Note that there are two other possibilities: If R lies on the hyperbolic ray CA, then

the hyperbolic line QR cuts AB, at P ∗ say. The only other possibility is that P lies

beyond A (e.g. at P ′), and that R lies beyond C (e.g. at R′). Then P ′R′ cuts BC,

at Q∗ say. In each case a similar application of Menelaus gives the result.

7. (Ceva’s Theorem for Hyperbolic Triangles) If X is a point not on any side of an

hyperbolic triangle ABC such that AX and BC meet in Q, BX and AC in R, and
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CX and AB in P , then h(A,P,B)h(B,Q,C)h(C,R,A) = 1. Moreover, (the converse

of Ceva’s theorem for hyperbolic triangles): If P lies on the hyperbolic line AB, Q

on BC, and R on CA such that h(A,P,B)h(B,Q,C)h(C,R,A) = 1, and two of the

hyperbolic lines CP , BR and AQ meet, then all three are concurrent.

Solution: A little consideration shows that, if we change the labels of the vertices,

then either the factors are simply permuted, or are inverted and permuted. Since our

aim is to show that the product is 1, the labelling of the vertices of the hyperbolic

triangle is immaterial. It follows that there are essentially three cases, depending

upon the position of X relative to A:

Case I (X is in between A and Q inside the triangle): Applying Menelaus’s Theorem to

the hyperbolic triangle AQC, cut by BXR, gives |h(A,X,Q)h(Q,B,C)h(C,R,A)| =

1,so that

(sinh(d(A,X)/ sinh(d(X,Q)) (sinh(d(Q,B)/ sinh(d(B,C)) (sinh(d(C,R)/ sinh(d(R,A)) = 1

Similarly, applying Menelaus’s Theorem to the hyperbolic triangle AQB, cut by CXP

gives

(sinh(d(A,X)/ sinh(d(X,Q)) (sinh(d(Q,C)/ sinh(d(C,B))(sinh(d(B,P )/ sinh(d(P,A)) = 1

Dividing these two expressions and cancelling common factors, we get

(sinh(d(A,P )/ sinh(d(P,B)) (sinh(d(B,Q)/ sinh(d(Q,C)) (sinh(d(C,R)/sinh(d(R,A)) = 1

Since, in this case, the sides are cut internally, h(A,P,B)h(B,Q,C)h(C,R,A) = 1,

as required.

The other two cases are almost identical and are left as an exercisc.

Next we prove the Converse of Ceva’s Theorem: a little consideration shows that, if

we change the labels of the vertices, then either the factors are simply permuted, or

are inverted and permuted. Since our hypothesis is that the product is 1, the labelling

of the vertices of the hyperbolic triangle is immaterial. The key is to show that the

hyperbolic line through the intersection X of two of CP,AQ,BR and the third vertex

cuts the third side of the hyperbolic triangle. We apply Ceva’s Theorem to this point

X. If P lies between A and B, then CP cuts the hyperbolic segment AQ, at X say.

Also, BX cuts the hyperbolic segment AC, at R∗,say. Applying Ceva’s Theorem to the

hyperbolic triangle ABC, and the point X, we get h(A,P,B)h(B,Q,C)h(C,R,A) =

1. Comparing this with the hypothesis, h(C,R,A) = h(C,R∗, A). By the Hyperbolic

Ratio Theorem (the lemma above), R = R∗, so AQ,BR,CP concur at X. A similar

argument applies if R lies between A and C.

Now suppose that P lies beyond B, and R beyond C. Then BR and CP meet at X,

which lies within angle BAC. Now AX cuts the hyperbolic segment BC at Q∗, say.

It now follows as before that Q = Q∗, so the hyperbolic lines are concurrent.

Next suppose that P lies beyond B, and R beyond A. Then the hyperbolic ray

RB enters angle PBC at B, and so cuts CP at X, say. Since X lies within the
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angleBAC,AX cuts the segment BC, at Q∗, say. It now follows as before that Q = Q∗,

so the lines are concurrent. The case where P is beyond A, and R beyond C is similar.

Note that, in all of the above cases, the lines AQ,BR,CP must meet. We

are left with cases where both P and R lie beyond A. The hypotheses include the

condition that at least two of AQ,BR,CP meet. Suppose first that BR and CP

meet, at X, say. Then X lies within angle RAP , so AX meets the segmentBC, atQ∗,

say. It now follows as before that Q = Q∗, so the lines are concurrent. Suppose next

that BR and AQ meet, at X, say. Now X and C lie on opposite sides of AB, so

CX meets AB, at P ∗, say. Much as before, we deduce that P = P ∗, so the lines are

concurrent. The case where CP and AQ meet is similar to the previous case.

8. Use the above to show that: 1) The hyperbolic medians of a hyperbolic triangle are

concurrent. 2) The internal angle bisectors of a hyperbolic triangle are concurrent.

3) If any two hyperbolic altitudes of a hyperbolic triangle meet, then the hyperbolic

altitudes are concurrent.

Solution: (i) The Medians Theorem for Hyperbolic Triangles: i.e., The hyperbolic

medians of a hyperbolic triangle are concurrent:

Let ABC be an hyperbolic triangle, and let the hyperbolic medians be AQ, BR and

CP . Since P is the hyperbolic midpoint of BC, one has h(A,P,B) = sinh(d(A,P ))/ sinh(d(P,B)) =

1, and similarly h(B,Q,C) = h(C,R,A) = 1. Hence h(A,P,B)h(B,Q,C)h(C,R,A) =

1. The h-medians all lie within the hyperbolic triangle, so any two must meet. Thus,

by the Converse of Ceva’s Theorem, the hyperbolic medians AQ, BR and CP are

collinear.

(ii) The Angle Bisectors Theorem for Hyperbolic Triangles: The internal angle bisec-

tors of a hyperbolic triangle are concurrent:

Let ABC be an hyperbolic triangle, and let the angle bisectors be AQ,BR and CP .

By the Hyperbolic Sine Rule applied to the hyperbolic triangles AQC and AQB,

sinh(d(Q,C))/ sin(∠QAC) = sinh(d(A,Q))/ sin(∠ACQ),

and

sinh(d(B,Q))/ sin(∠QAB) = sinh(d(A,Q))/ sin(∠ABQ).

As AQ bisects ∠BAC,∠QAC = ∠QAB, so these equations yield h(B,C,Q) =

sin(∠ACB)/ sin(∠ABC). SImilarly, using the bisectors BR and CP , one get h(A,B, P ) =

sin(∠CBA)/ sin(∠CAB), and h(C,A,R) = sin(∠BAC)/ sin(∠BCA). Multiplying

the ratios, h(A,B, P )h(B,C,Q)h(C,A,R) = 1. The angle bisectors all lie within

the triangle, so any two must meet. Thus, by the Converse of Ceva’s Theorem, the

bisectors AQ, BR and CP are collinear.
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