Non-Euclidean Geometry (spring 2011)

Exercise No. 8 - Hyperbolic Geometry

1. Verify that the hyperbolic disk $D_{\triangle}(a, r)$ is the Euclidean disk with center c and radius R, where

$$
c=\frac{a\left(1-\tanh ^{2}(r / 2)\right)}{1-|a|^{2} \tanh ^{2}(r / 2)}, \text { and } R=\frac{\left(1-|a|^{2}\right) \tanh (r / 2)}{1-|a|^{2} \tanh ^{2}(r / 2)}
$$

2. "Recall" from differential geometry that if $d s^{2}=g_{1}(x, y) d x^{2}+g_{2}(x, y) d y^{2}$ is a Riemannian metric on a surface, then the Gaussian curvature K is given by

$$
K=\frac{-1}{\sqrt{g_{1} g_{2}}}\left[\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{g_{1}}} \frac{\partial}{\partial x} \sqrt{g_{2}}\right)+\frac{\partial}{\partial y}\left(\frac{1}{\sqrt{g_{2}}} \frac{\partial}{\partial y} \sqrt{g_{1}}\right)\right]
$$

Show that the different models of Hyperbolic geometry discussed in class $(\mathbb{H}, \mathbb{I}, \mathbb{J}, \mathbb{K}, \mathbb{L})$ are spaces of constant negative curvature -1 .
3. Show that the map $\gamma: \mathbb{J} \rightarrow \mathbb{K}$ that was defined in class is an isometry between the Hemi-sphere and the Klein models.
4. Let $g \in \operatorname{PSL}(2, \mathbb{R})$ be an isometry of the hyperbolic plane \mathbb{H}. Denote the translation length of g by $l(g)=\inf _{z \in \mathbb{H}} \rho_{\mathbb{H}}(z, g z)$. Show that $l(g)>0$ if and only if g is hyperbolic (as a Möbius transformation). Next, assume that g is hyperbolic. Find $\mathrm{l}(\mathrm{g})$ in terms of $\operatorname{tr}^{2}(g)$. Show that the infimum in the definition of the translation length is attained at any point of the unique hyperbolic line invariant under g. (Hints: 1) the distance l is invariant under conjugation, 2) use canonical forms.)
5. A non-identity Möbius transformation T that maps a disc \triangle onto itself is one of the following:

- (a) Elliptic with two fixed points, one in \triangle and one in the complementary disc;
- (b) Hyperbolic with two fixed points, both on the boundary $\partial \triangle$ of \triangle;
- (c) Parabolic with one fixed point, which lies on $\partial \triangle$.

6. Let $g \in \operatorname{PSL}(2, \mathbb{R})$ given by $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ Show that in the upper-half model

$$
2 \cosh \left(d_{\mathbb{H}}(i, g i)\right)=a^{2}+b^{2}+c^{2}+d^{2}
$$

7. (*) Use the above exercise to show that any discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ acts properly on the upper-half plane. ("Recall" that an action of a discrete group G on a locally compact space X is said to be properly discontinuous if for every compact K in X, one has $K \cap g K=\emptyset$ except for a finite number of $g \in G$). Hint: start with the fact that G is countable.
