Non-Euclidean Geometry (spring 2011)

Exercise No. 8 - Hyperbolic Geometry

1. Verify that the hyperbolic disk $D_{\triangle}(a, r)$ is the Euclidean disk with center c and radius R, where

$$c = \frac{a(1 - \tanh^2(r/2))}{1 - |a|^2 \tanh^2(r/2)}$$
, and $R = \frac{(1 - |a|^2) \tanh(r/2)}{1 - |a|^2 \tanh^2(r/2)}$

2. "Recall" from differential geometry that if $ds^2 = g_1(x, y)dx^2 + g_2(x, y)dy^2$ is a Riemannian metric on a surface, then the Gaussian curvature K is given by

$$K = \frac{-1}{\sqrt{g_1g_2}} \left[\frac{\partial}{\partial x} \left(\frac{1}{\sqrt{g_1}} \frac{\partial}{\partial x} \sqrt{g_2} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\sqrt{g_2}} \frac{\partial}{\partial y} \sqrt{g_1} \right) \right]$$

Show that the different models of Hyperbolic geometry discussed in class $(\mathbb{H}, \mathbb{I}, \mathbb{J}, \mathbb{K}, \mathbb{L})$ are spaces of constant negative curvature -1.

- 3. Show that the map $\gamma : \mathbb{J} \to \mathbb{K}$ that was defined in class is an isometry between the Hemi-sphere and the Klein models.
- 4. Let $g \in PSL(2, \mathbb{R})$ be an isometry of the hyperbolic plane \mathbb{H} . Denote the translation length of g by $l(g) = \inf_{z \in \mathbb{H}} \rho_{\mathbb{H}}(z, gz)$. Show that l(g) > 0 if and only if g is hyperbolic (as a Möbius transformation). Next, assume that g is hyperbolic. Find l(g) in terms of $tr^2(g)$. Show that the infimum in the definition of the translation length is attained at any point of the unique hyperbolic line invariant under g. (**Hints:** 1) the distance l is invariant under conjugation, 2) use canonical forms.)
- 5. A non-identity Möbius transformation T that maps a disc \triangle onto itself is one of the following:
 - (a) Elliptic with two fixed points, one in \triangle and one in the complementary disc;
 - (b) Hyperbolic with two fixed points, both on the boundary $\partial \triangle$ of \triangle ;
 - (c) Parabolic with one fixed point, which lies on $\partial \triangle$.

6. Let
$$g \in PSL(2, \mathbb{R})$$
 given by $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ Show that in the upper-half model
 $2\cosh(d_{\mathbb{H}}(i, gi)) = a^2 + b^2 + c^2 + d^2$

7. (*) Use the above exercise to show that any discrete subgroup of $PSL(2, \mathbb{R})$ acts properly on the upper-half plane. ("Recall" that an action of a discrete group G on a locally compact space X is said to be properly discontinuous if for every compact Kin X, one has $K \cap gK = \emptyset$ except for a finite number of $g \in G$). Hint: start with the fact that G is countable.