Non-Euclidean Geometry (spring 2011)

Exercise No. 8 - Hyperbolic Geometry

1. Verify that the hyperbolic disk $D_{\triangle}(a, r)$ is the Euclidean disk with center c and radius R, where

$$
c=\frac{a\left(1-\tanh ^{2}(r / 2)\right)}{1-|a|^{2} \tanh ^{2}(r / 2)}, \text { and } R=\frac{\left(1-|a|^{2}\right) \tanh (r / 2)}{1-|a|^{2} \tanh ^{2}(r / 2)}
$$

2. "Recall" from differential geometry that if $d s^{2}=g_{1}(x, y) d x^{2}+g_{2}(x, y) d y^{2}$ is a Riemannian metric on a surface, then the Gaussian curvature K is given by

$$
K=\frac{-1}{\sqrt{g_{1} g_{2}}}\left[\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{g_{1}}} \frac{\partial}{\partial x} \sqrt{g_{2}}\right)+\frac{\partial}{\partial y}\left(\frac{1}{\sqrt{g_{2}}} \frac{\partial}{\partial y} \sqrt{g_{1}}\right)\right]
$$

Show that the different models of Hyperbolic geometry discussed in class $(\mathbb{H}, \mathbb{I}, \mathbb{J}, \mathbb{K}, \mathbb{L})$ are spaces of constant negative curvature -1 .

Solution: This follows from a direct computation. For example, in the case of \mathbb{H} one has $g_{1}=g_{2}=1 / y^{2}$ and hence

$$
\frac{\partial}{\partial x} \sqrt{g_{2}}=0, \frac{\partial}{\partial y} \sqrt{g_{1}}=-1 / y^{2}, \text { and } \frac{\partial}{\partial y}\left(\frac{1}{\sqrt{g_{2}}} \frac{\partial}{\partial y} \sqrt{g_{1}}\right)=\frac{1}{y^{2}}
$$

from which the result follows. A similar computation shows the other cases.
3. Show that the map $\gamma: \mathbb{J} \rightarrow \mathbb{K}$ that was defined in class is an isometry between the Hemi-sphere and the Klein models.

Solution: Set $y_{1}=x_{1}, \ldots, y_{n}=x_{n}$, and $y_{n+1}^{2}=1-y_{1}^{2}-\cdots-y_{n}^{2}=1-x_{1}^{2}-\cdots-x_{n}^{2}$. Then, $d y_{i}=d x_{i}$ for $i=1, \ldots, n$ and $y_{n+1} d y_{n+1}=-\left(x_{1} d x_{1}+\ldots x_{n} d x_{n}\right)$. Thus,

$$
\begin{gathered}
\gamma^{*}\left(d s_{J}^{2}\right)=\frac{1}{y_{n+1}^{2}}\left(d y_{1}^{2}+\ldots+d y_{n}^{2}\right)+\frac{1}{y_{n+1}^{2}} d y_{n+1}^{2}= \\
=\frac{1}{\left(1-x_{1}^{2}-\ldots-x_{n}^{2}\right)}\left(d x_{1}^{2}+\ldots+d x_{n}^{2}\right)+\frac{\left(x_{1} d x_{1}+\ldots+x_{n} d x_{n}\right)^{2}}{\left(1-x_{1}^{2}-\ldots-x_{n}^{2}\right)^{2}}=d s_{K}^{2}
\end{gathered}
$$

4. Let $g \in \operatorname{PSL}(2, \mathbb{R})$ be an isometry of the hyperbolic plane \mathbb{H}. Denote the translation length of g by $l(g)=\inf _{z \in \mathbb{H}} \rho_{\mathbb{H}}(z, g z)$. Show that $l(g)>0$ if and only if g is hyperbolic (as a Möbius transformation). Next, assume that g is hyperbolic. Find $\mathrm{l}(\mathrm{g})$ in terms of $\operatorname{tr}^{2}(g)$. Show that the infimum in the definition of the translation length is attained at any point of the unique hyperbolic line invariant under g. (Hints: 1) the distance l is invariant under conjugation, 2) use canonical forms.)

Solution: In the hyperbolic case, using the fact that the distance is invariant under conjugation, we can consider the case where $g(z)=k z$ for $k>0$. Using the formula proven in "Daf" 6 exercise 2, we conclude that

$$
\sinh \frac{1}{2} \rho_{\mathbb{H}}(z, g z)=\frac{|z||1-k|}{2 \operatorname{Im}(z) \sqrt{k}}
$$

Thus, it follows that this function attains its minimum (over $z \in \mathbb{H}$) at and only at each z on the axis $x=0$. Moreover, in this case $l(g)>0$, and (by invariance under conjugation)

$$
\cosh ^{2}\left(\frac{1}{2} l\right)=1+\frac{(1-k)^{2}}{4 k}=\operatorname{trace}^{2}(g) / 4
$$

In the non-hyperbolic case, using canonical forms of the transformation, we can easily show that $l(g)=0$. Indeed if g is parabolic or elliptic then they would have fixed points (at "infinity" in the case of g parabolic) and hence $l(g)=0$.
5. A non-identity Möbius transformation T that maps a disc \triangle onto itself is one of the following:

- (a) Elliptic with two fixed points, one in \triangle and one in the complementary disc;
- (b) Hyperbolic with two fixed points, both on the boundary $\partial \triangle$ of \triangle;
- (c) Parabolic with one fixed point, which lies on $\partial \triangle$.

Solution: We showed in class (it's easy) that T has either one or two fixed points. Suppose that T has two fixed points. Then T is conjugate to $M_{k}: z \mapsto k z$ for some $\mathrm{k} \neq 0,1$. When $|k|=1$, the only discs M_{k} maps onto themselves are $\{|z|<r\}$ and $\{|z|>r\}$. Hence we are in case (a). When $k>0(k \neq 1)$, the only discs mapped onto themselves are the half planes $\left\{\operatorname{Re}\left(e^{i \theta}\right) z>0\right\}$. Hence we are in case (b). (All other values for k give loxodromic transformations and these map no disc onto itself.) Suppose that T has only one fixed point. Then T is conjugate to $z \mapsto z+1$. The only discs mapped onto themselves in this case are the half planes $\{\operatorname{Im}(z)>c\}$. Hence we are in case (c).
6. Let $g \in \operatorname{PSL}(2, \mathbb{R})$ given by $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ Show that in the upper-half model

$$
2 \cosh \left(d_{\mathbb{H}}(i, g i)\right)=a^{2}+b^{2}+c^{2}+d^{2}
$$

Solution: From the formula we proved in class one has

$$
\begin{gathered}
\cosh (d(i, g \cdot i))=1+\frac{|i-g \cdot i|^{2}}{2 \operatorname{Im}(g \cdot i)}=1+\frac{c^{2}+d^{2}}{2}\left[\frac{(b d+a c)^{2}}{\left(c^{2}+d^{2}\right)^{2}}-\frac{\left(1-c^{2}+d^{2}\right)^{2}}{\left(c^{2}+d^{2}\right)^{2}}\right] \\
=1+\frac{1}{2\left(c^{2}+d^{2}\right)}\left[(b d+a c)^{2}+1+\left(c^{2}+d^{2}\right)^{2}-2\left(c^{2}+d^{2}\right)\right] \\
=1+\frac{1}{2\left(c^{2}+d^{2}\right)}\left[(b d+a c)^{2}+(a d-b c)^{2}+\left(c^{2}+d^{2}\right)^{2}-2\left(c^{2}+d^{2}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
=1+\frac{1}{2\left(c^{2}+d^{2}\right)}\left[\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)+\left(c^{2}+d^{2}\right)^{2}-2\left(c^{2}+d^{2}\right)\right] \\
=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
\end{gathered}
$$

7. (*) Use the above exercise to show that any discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ acts properly on the upper-half plane. ("Recall" that an action of a discrete group G on a locally compact space X is said to be properly discontinuous if for every compact K in X, one has $K \cap g K=\emptyset$ except for a finite number of $g \in G$). Hint: start with the fact that G is countable.
