# Non-Euclidean Geometry (spring 2011) 

Exercise No. 9

1. Show that the radius $R$ of the inscribed circle in a hyperbolic triangle $T=\triangle A B C$ is given by:

$$
\tanh ^{2} R=\frac{\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma-1}{2(1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)}
$$

2. Let $\alpha$ be the angle of parallelism (i.e., the angle at one vertex of a right hyperbolic triangle that has two asymptotic parallel sides), and let be the segment length between the right angle and the vertex of the angle of parallelism. In class we proved that $\cosh (b) \sin \alpha=1$. Show that this condition is equivalnet to the following:

$$
\text { (i) } \sinh (b) \tan \alpha=1, \quad \text { (ii) } \tanh (b) \sec \alpha=1, \quad(i i i) e^{-b}=\tan (\alpha / 2)
$$

3. Prove that $\Gamma=P S L(2, \mathbb{Z})$ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.
4. Find a fundamental domain in $\mathbb{H}^{2}$ for the group $\Gamma=\left\{\gamma_{n} \mid \gamma_{n}(z)=2^{n} z\right\}$
5. Show that the following conditions on a subgroup $G<S L(2, \mathbb{R})$ are equivalent: (i) There are no accumulation points in $G$; (ii) $G$ has no accumulation points in $S L(2, \mathbb{R})$; (iii) The identity is an isolated point of $G$.
6. $\left(^{* *}\right)$ Let $T \in \operatorname{Isom}^{+}(\mathbb{H})$ be parabolic. If $S \in \operatorname{Isom}(\mathbb{H})$ commutes with $T$, what can we say about the group generated by $S$ and $T$ ?
7. How many points are there in the projective plane $\mathbb{P}\left(\mathbb{Z}_{2}^{3}\right)$ ? How many lines? How many points does each line contain? How many lines pass through each point?
8. Let $\mathbb{P}(V)$ be a projective space of dimension at least 2 (thus $\operatorname{dim} V \geq 3$ ). Prove that:
(a) Distinct projective lines in $\mathbb{P}(V)$ intersect in at most one point. (Very easy!)
(b) Distinct projective lines in $\mathbb{P}(V)$ intersect if and only if they lie in some (unique) projective plane.
(c) Give an example of two non-intersecting projective lines in $\mathbb{P}\left(\mathbb{R}^{4}\right)$.
9. Let $\mathbb{P}(V)$ be a projective space and $\mathbb{P}\left(W_{1}\right), \mathbb{P}\left(W_{2}\right) \subset \mathbb{P}(V)$ distinct projective subspaces of complementary dimension: $\operatorname{dim} \mathbb{P}\left(W_{1}\right)+\operatorname{dim} \mathbb{P}\left(W_{2}\right)=\operatorname{dim} \mathbb{P}(V)$. Prove that the $\mathbb{P}\left(W_{i}\right)$ intersect. What does this tell us when $\left.\operatorname{dim} \mathbb{P}(V)\right)=3$ ?
10. Suppose that $T$ and $T^{\prime}$ define the same projective transformation, then $T=\lambda T^{\prime}$ for some $\lambda \neq 0$.
