Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 9

1. Show that the radius R of the inscribed circle in a hyperbolic triangle $T=\triangle A B C$ is given by:

$$
\tanh ^{2} R=\frac{\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma-1}{2(1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)}
$$

Solution: We proved in Exercise no. 7 that the angle bisectors of T meet at a point ξ at T. Denote by W_{C} the point on the edge c for which $\angle A W_{C} \xi=B W_{c} \xi=\pi / 2$. In a similar manner we definte the points W_{a} and W_{b}. Check that the inscribed circle is the circle centered at ξ passing through W_{a}, W_{b} and W_{c}. Next, denote $x=\rho_{\mathbb{H}}\left(A, W_{c}\right)$, and $y=\rho_{\mathbb{H}}\left(W_{c}, B\right)$. Then

$$
\frac{\cos \alpha \cos \beta+\cos \gamma}{\sin \alpha \sin \beta}=\cosh x \cosh y+\sinh x \sinh y
$$

From this we obtain that

$$
\begin{gathered}
{[(\cos \alpha \cos \beta+\cos \gamma)-(\sin \alpha \sinh x)(\sin \beta \sinh y)]^{2}=} \\
=\left[\left(1-\cos ^{2} \alpha\right)+\sin ^{2} \alpha \sinh ^{2} x\right]\left[\left(1-\cos ^{2} \beta\right)+\sin ^{2} \beta \sinh ^{2} y\right]
\end{gathered}
$$

The identity $\sin \theta=(1+\cos \theta) \tan (\theta / 2)$ together with the relation $\tanh R=\sinh x \tan (\alpha / 2)$ yields $\sin \alpha \sinh x=(1+\cos \alpha) \tanh R$. A similar relation holds for β, γ and R and substituting yields (after some simplifications) the desired result.
2. Let α be the angle of parallelism (i.e., the angle at one vertex of a right hyperbolic triangle that has two asymptotic parallel sides), and let b be the segment length between the right angle and the vertex of the angle of parallelism. In class we proved that $\cosh (b) \sin \alpha=1$. Show that this condition is equivalnet to the following:

$$
\text { (i) } \sinh (b) \tan \alpha=1, \quad \text { (ii) } \tanh (b) \sec \alpha=1, \quad \text { (iii) } e^{-b}=\tan (\alpha / 2)
$$

3. Prove that $\Gamma=P S L(2, \mathbb{Z})$ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

Solution: There are many ways to prove this. For example, you can use the following criterion: The subgroup $G \in S L(2, \mathbb{C})$ is discrete if and only if for every positive k one has that $\{A \in G \mid\|A\| \leq k\}$ is finite. Here $\|A\|^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$. If this set is finite for each k, then G clearly cannot have any limit points (the norm function is continuous) and so G is discrete. On the other hand, if this set is infinite then there are distinct elements A_{n} in G with $\left\|A_{n}\right\| \leq k$, for $n=1,2, \ldots$. If A_{n}
has coefficients $\left(a_{n}, b_{n}, c_{n}, d_{n}\right)$ then $\left|a_{n}\right| \leq k$ and so the sequence a_{n} has a convergent subsequence. The same is true for the other coefficients, and using the well known "diagonal process" we get a subseqence on which each of the coefficient converge. On this subsequence, $A_{n} \rightarrow B$ say, for some B and as the determinante is continuous, $B \in S L(2, \mathbb{C})$, and thus G is not discrete. Using this criterion, it follows immediatly that $G \in S L(2, \mathbb{C})$ is discrete.
4. Find a fundamental domain in \mathbb{H}^{2} for the group $\Gamma=\left\{\gamma_{n} \mid \gamma_{n}(z)=2^{n} z\right\}$
5. Show that the following conditions on a subgroup $G<S L(2, \mathbb{R})$ are equivalent: (i) There are no accumulation points in G; (ii) G has no accumulation points in $S L(2, \mathbb{R})$; (iii) The identity is an isolated point of G.

Solution:

Remark: Note that condition (ii) is on the face of it somewhat stronger than (i). In fact for general metric spaces $X \subset Y$, the conditions (i) and (ii) are not equivalent. For example, suppose $X=\{1 / n\} \subset[0,1]=Y$. Then X has no accumulation points in itself, so (i) holds, but it does have an accumulation point $0 \in Y$, so (ii) fails. The proof which follows shows that if X, Y are topological groups, then the two conditions are the same.
(i) implies (ii): Suppose that (ii) fails so that $g_{n} \rightarrow h$ for some $h \in S L(2, \mathbb{R})$. Then $g_{n} g_{n+1}^{-1} \rightarrow h h^{1}=\operatorname{Id}$. Since G is a subgroup, $\operatorname{Id} \in G$ and hence (i) fails.
(ii) implies (iii) since if the identity is not an isolated point, then clearly (ii) fails.
(iii) implies (i): Choose a neighbourhood Id $\in U$ such that $G \cap U=\{\mathrm{id}\}$. Then if $g \in G$, we have $G \cap g U=\{g\}$ which implies (i).
6. ${ }^{(* *)}$ Let $T \in \operatorname{Isom}^{+}(\mathbb{H})$ be parabolic. If $S \in \operatorname{Isom}(\mathbb{H})$ commutes with T, what can we say about the group generated by S and T ?
7. How many points are there in the projective plane $\mathbb{P}\left(\mathbb{Z}_{2}^{3}\right)$? How many lines? How many points does each line contain? How many lines pass through each point?

Solution:

(a) The same argument as that given in lectures establishes that, for any field \mathbb{F}, one has $\mathbb{P}\left(\mathbb{F}^{2}\right) \simeq \mathbb{F} \sqcup\{\infty\}$ so that $\left|\mathbb{P}\left(\mathbb{F}^{2}\right)\right|=|\mathbb{F}|+1$. When $\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$, this yields $\left|\mathbb{P}\left(\mathbb{F}^{2}\right)\right|=$ $2+1=3$. Alternatively, we view $\mathbb{P}\left(\mathbb{F}^{2}\right)$ as $\mathbb{F}^{2} \backslash\{0\} / \sim$ and observe that all equivalence classes have the same size which is $|\mathbb{F} \backslash\{0\}|$ because, for any $v \in \mathbb{F}^{2} \backslash\{0\}$, the map $\lambda \mapsto \lambda v$ is a bijection from $\mathbb{F} \backslash\{0\}$ to the equivalence class of v. Since equivalence classes partition, we have $\left|\mathbb{P}\left(\mathbb{F}^{2}\right)\right|=\left|\mathbb{F}^{2} \backslash\{0\}\right| / / \mathbb{F} \backslash\{0\} \mid=\left(2^{2}-1\right) /(2-1)=3$
(b) Either argue that $\mathbb{P}\left(\mathbb{F}^{3}\right) \simeq \mathbb{F}^{2} \sqcup \mathbb{F} \sqcup\{\infty\}$ so that $\left|\mathbb{P}\left(\mathbb{F}^{3}\right)\right|=2^{2}+2+1=7$ or that $\left|\mathbb{P}\left(\mathbb{F}^{3}\right)\right|=\left|\mathbb{F}^{3} \backslash\{0\}\right| /|F \backslash\{0\}|=\left(2^{3}-1\right) /(2-1)=7$. As for the lines in $\mathbb{P}\left(\mathbb{F}^{3}\right)$, a line is determined by any pair of distinct points lying on it. There are $7 \times 6 / 2$ such pairs and any particular line is equally well determined by any of the 3 pairs of the 3 points on it. Thus there are $7=7 \times 6 / 2 \times 3$ lines in the plane $\mathbb{P}\left(\mathbb{F}^{2}\right)$.
(c) Fix a point, then there are 6 pairs that include that point and each determines a line which is counted twice over: once for each of the other two points on the line. Thus there are $6 / 2=3$ lines through each point.
(d) The same arguments apply for the field with 3 elements: $\left|\mathbb{P}\left(\mathbb{F}^{2}\right)\right|=3+1=$ $4=\left(3^{2}-1\right) /(3-1)$. Similarly, $\left|\mathbb{P}\left(\mathbb{F}^{3}\right)\right|=13$. Meanwhile, each line has 4 points and is determined by any of the 6 pairs of point that lie thereon. In all, there are $13 \times 12 / 2=13 \times 6$ pairs of points in $\mathbb{P}\left(\mathbb{F}^{3}\right)$ and thus 13 lines. Finally, there are 12 pairs that include a given point and each determines a line through that point which is counted 3 times over, giving 4 lines through a given point.
8. Let $\mathbb{P}(V)$ be a projective space of dimension at least 2 (thus $\operatorname{dim} V \geq 3$). Prove that:
(a) Distinct projective lines in $\mathbb{P}(V)$ intersect in at most one point. (Very easy!)
(b) Distinct projective lines in $\mathbb{P}(V)$ intersect if and only if they lie in some (unique) projective plane.
(c) Give an example of two non-intersecting projective lines in $\mathbb{P}\left(\mathbb{R}^{4}\right)$.

Solution: (a) In class we proved that there is a unique line through two distinct points. Thus distinct lines can intersect in at most one point.
(b) Let $L_{i}=\mathbb{P}\left(U_{i}\right), i=1,2$, be distinct lines in $\mathbb{P}(V)$. Thus each U_{i} is a 2-dimensional subspace of V and the lines meet if and only if $U_{1} \cap U_{2} \neq \emptyset$. In this case, we have $1 \leq \operatorname{dim}\left(U_{1} \cap U_{2}\right)<\operatorname{dim} U_{i}=2$ where the latter inequality is strict since $U_{1} \neq U_{2}$. Thus the lines intersect if and only if $\operatorname{dim}\left(U_{1} \cap U_{2}\right)=1$. In this case,

$$
\operatorname{dim}\left(U_{1}+U_{2}\right)=\operatorname{dim} U_{1}+\operatorname{dim} U_{2}-\operatorname{dim}\left(U_{1} \cap U_{2}\right)=2+2-1=3
$$

Thus, L_{1} and L_{2} lie in the projective plane $\mathbb{P}\left(U_{1}+U_{2}\right)$. The converse, which uses a similar argument is left as an exercise. For uniqueness, any projective plane $\mathbb{P}(W)$ that contains L_{1} and L_{2} must have $U_{i} \subseteq W$ and so $U_{1}+U_{2} \subseteq W$ whence $W=U_{1}+U_{2}$ since both have dimension 3 .
(c) We just need linear subspaces $U_{i} \subseteq \mathbb{R}^{4}$ with $U_{1} \cap U_{2}=\{0\}$. For example, take $U_{1}=\left\{\left(\lambda_{0}, \lambda_{1}, 0,0\right), \lambda_{0}, \lambda_{1} \in \mathbb{R}\right\}$ and $U_{2}=\left\{\left(0,0, \lambda_{2}, \lambda_{3}\right), \lambda_{2}, \lambda_{3} \in \mathbb{R}\right\}$.
9. Let $\mathbb{P}(V)$ be a projective space and $\mathbb{P}\left(W_{1}\right), \mathbb{P}\left(W_{2}\right) \subset \mathbb{P}(V)$ distinct projective subspaces of complementary dimension: $\operatorname{dim} \mathbb{P}\left(W_{1}\right)+\operatorname{dim} \mathbb{P}\left(W_{2}\right)=\operatorname{dim} \mathbb{P}(V)$. Prove that the $\mathbb{P}\left(W_{i}\right)$ intersect. What does this tell us when $\left.\operatorname{dim} \mathbb{P}(V)\right)=3$?
Solution: let $\operatorname{dim} \mathbb{P}(V)=n$ and $\operatorname{dim} \mathbb{P}\left(W_{1}\right)=k$ so that $\operatorname{dim} V=n+1, \operatorname{dim} W_{1}=k+1$, and $\operatorname{dim} W_{2}=n k+1$. We want to show that $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \geq 1$. Now $W_{1}+W_{2} \subseteq V$ so that

$$
\begin{aligned}
n+1=\operatorname{dim} V & \geq \operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right) \\
& =(k+1)+(n-k+1)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
\end{aligned}
$$

and rearranging this gives what we want. When $n=3$, the only interesting possibility is $k=1,2$ and the result asserts that any projective line must intersect any projective
plane. It is easy to see that this intersection point is unique $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=1$ or the line lies in the plane $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=2$.
10. Suppose that T and T^{\prime} define the same projective transformation, then $T=\lambda T^{\prime}$ for some $\lambda \neq 0$.
Solution: Suppose $\left[T^{\prime}(v)\right]=[T(v)]$ for all $v \in V \backslash\{0\}$. This implies $T^{\prime}(v)=\lambda(v) T(v)$ for some non-zero scalar $\lambda(v)$ which may a priori depend on v. We have to show that it does not. So suppose $v, w \in V \backslash\{0\}$. If v, w are linearly dependent, then it is obvious from the definition of $\lambda(v)$ that $\lambda(v)=\lambda(w)$. So assume v, w are linearly independent. Now

$$
T^{\prime}(v+w)=T^{\prime}(v)+T^{\prime}(w)=\lambda(v) T(v)+\lambda(w) T(w)
$$

but also

$$
T^{\prime}(v+w)=\lambda(v+w) T(v+w)=\lambda(v+w)(T(v)+T(w))
$$

Since $T(v)$ and $T(w)$ are also linearly independent this implies $\lambda(v)=\lambda(v+w)=\lambda(w)$, which completes the proof.

