Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 9

1. Show that the radius R of the inscribed circle in a hyperbolic triangle T'= AABC'is

given by:

0082a+6052ﬁ+6052'y+ 2cosacosBeosy —1
2(1+ cosa)(1 + cos B)(1 + cos )

tanh®? R =

Solution: We proved in Exercise no. 7 that the angle bisectors of T' meet at a point
¢ at T. Denote by We the point on the edge ¢ for which ZAWoE = BW.L = /2. In
a similar manner we definte the points W, and W3. Check that the inscribed circle is
the circle centered at £ passing through W,, W;, and W,... Next, denote x = pg(A, W),
and y = pg(We, B). Then

cos o cos 3 + cos 7y

- - = cosh x cosh y + sinh z sinh y
sin asin 3

From this we obtain that
[(cos acos B + cosy) — (sin asinh ) (sin Bsinh y)]? =

= [(1 — cos® @) + sin? asinh? z][(1 — cos? B) + sin? B sinh? y]

The identity sin @ = (1+4-cos #) tan(0/2) together with the relation tanh R = sinh z tan(a/2)
yields sinasinhz = (1 + cosa)tanh R. A similar relation holds for 3,7 and R and
substituting yields (after some simplifications) the desired result.

. Let a be the angle of parallelism (i.e., the angle at one vertex of a right hyperbolic
triangle that has two asymptotic parallel sides), and let b be the segment length
between the right angle and the vertex of the angle of parallelism. In class we proved
that cosh(b) sin @ = 1. Show that this condition is equivalnet to the following:

(i) sinh(b)tana =1, (i) tanh(b)seco = 1, (iii) e~? = tan(a/2)

. Prove that ' = PSL(2,7Z) is a discrete subgroup of PSL(2,R).

Solution: There are many ways to prove this. For example, you can use the following
criterion: The subgroup G € SL(2,C) is discrete if and only if for every positive k
one has that {A € G | ||A]| < k} is finite. Here ||A]|? = (a® + b + 2 + d?). If
this set is finite for each k, then G clearly cannot have any limit points (the norm
function is continuous) and so G is discrete. On the other hand, if this set is infinite
then there are distinct elements A, in G with ||A,| < k, for n = 1,2,.... If A,



has coefficients (ay,, by, ¢y, dy,) then |a,| < k and so the sequence a,, has a convergent
subsequence. The same is true for the other coefficients, and using the well known
”diagonal process” we get a subsegence on which each of the coefficient converge. On
this subsequence, A, — B say, for some B and as the determinante is continuous,
B € SL(2,C), and thus G is not discrete. Using this criterion, it follows immediatly
that G € SL(2,C) is discrete.

. Find a fundamental domain in H? for the group I' = {7, |y.(2) = 2"2}

. Show that the following conditions on a subgroup G < SL(2,R) are equivalent: (i)
There are no accumulation points in G; (ii) G has no accumulation points in SL(2, R);
(iii) The identity is an isolated point of G.

Solution:

Remark: Note that condition (i7) is on the face of it somewhat stronger than (7). In
fact for general metric spaces X C Y , the conditions (i) and (4i) are not equivalent.
For example, suppose X = {1/n} C [0,1] =Y. Then X has no accumulation points
in itself, so (¢) holds, but it does have an accumulation point 0 € Y, so (ii) fails. The
proof which follows shows that if X, Y are topological groups, then the two conditions
are the same.

(¢) implies (#¢): Suppose that (ii) fails so that g, — h for some h € SL(2,R). Then
gngg}rl — hh! =1d. Since G is a subgroup, Id € G and hence (i) fails.

(74) implies (477) since if the identity is not an isolated point, then clearly (i) fails.

(i73) implies (i): Choose a neighbourhood Id € U such that GNU = {id}. Then if
g € G, we have G N gU = {g} which implies (7).

. (**) Let T € Isom™ (H) be parabolic. If S € Isom(H) commutes with T, what can we
say about the group generated by S and 17

. How many points are there in the projective plane P(Z3)? How many lines? How
many points does each line contain? How many lines pass through each point?

Solution:

(a) The same argument as that given in lectures establishes that, for any field F, one
has P(F?) ~ F U {oo} so that |[P(F?)| = |F| + 1. When F = Z/2Z, this yields|P(F?)| =
2+1 = 3. Alternatively, we view P(F?) as F2\ {0}/ ~ and observe that all equivalence
classes have the same size which is |F \ {0}| because, for any v € F2\ {0}, the map
A — v is a bijection from F \ {0} to the equivalence class of v. Since equivalence
classes partition, we have |P(F2)| = [F2\ {0}|/|F \ {0}| = (22 - 1)/(2-1) =3

(b) Either argue that P(F3) ~ F2 UF U {oo} so that |[P(F3)] =22 +2+4 1 =7 or that
IP(F3)| = |F3\ {0}|/|F \ {0} = (23 —1)/(2 — 1) = 7. As for the lines in P(F3), a line
is determined by any pair of distinct points lying on it. There are 7 x 6/2 such pairs
and any particular line is equally well determined by any of the 3 pairs of the 3 points
on it. Thus there are 7 =7 x 6/2 x 3 lines in the plane P(F?).



(c¢) Fix a point, then there are 6 pairs that include that point and each determines
a line which is counted twice over: once for each of the other two points on the line.
Thus there are 6/2 = 3 lines through each point.

(d) The same arguments apply for the field with 3 elements: |[P(F?)] = 3 +1 =
4 = (32 -1)/(3 —1). Similarly, |[P(F3)| = 13. Meanwhile, each line has 4 points
and is determined by any of the 6 pairs of point that lie thereon. In all, there are
13 x 12/2 = 13 x 6 pairs of points in P(F3) and thus 13 lines. Finally, there are 12
pairs that include a given point and each determines a line through that point which
is counted 3 times over, giving 4 lines through a given point.

. Let P(V') be a projective space of dimension at least 2 (thus dimV > 3). Prove that:
(a) Distinct projective lines in P(V') intersect in at most one point. (Very easy!)

(b) Distinct projective lines in P(V) intersect if and only if they lie in some (unique)
projective plane.

(c) Give an example of two non-intersecting projective lines in P(R%).

Solution: (a) In class we proved that there is a unique line through two distinct
points. Thus distinct lines can intersect in at most one point.

(b) Let L; = P(U;),i = 1,2, be distinct lines in P(V'). Thus each U; is a 2-dimensional
subspace of V' and the lines meet if and only if Uy N Us # 0. In this case, we have
1 < dim(U; NUsy) < dimU; = 2 where the latter inequality is strict since Uy # Us.
Thus the lines intersect if and only if dim(U; N Usz) = 1. In this case,

dim(U1 + Ug) = dimU; + dimUsy — dim(U1 N Ug) =24+2—-1=3

Thus, Ly and Lg lie in the projective plane P(U; + Us). The converse, which uses a
similar argument is left as an exercise. For uniqueness, any projective plane P(W)
that contains L1 and Lo must have U; C W and so U1+ Uy C W whence W = Uy + U,
since both have dimension 3.

(c) We just need linear subspaces U; C R* with U; N Uy = {0}. For example, take
U1 = {()\0,)\1,0,0), )\0,)\1 € R} and U2 = {(0,0, )\2,)\3), )\2,)\3 € R}.

. Let P(V) be a projective space and P(W7), P(W3) C P(V) distinct projective subspaces
of complementary dimension: dimP(W7) + dimP(W3) = dimP(V). Prove that the
P(W;) intersect. What does this tell us when dimP(V')) = 37

Solution: let dimP(V') = n and dimP(WW;) = k so that dimV = n+1, dimW; = k+1,
and dimWy = nk + 1. We want to show that dim(W; N Ws) > 1. Now Wi + Wy CV
so that

n+1=dimV > dim(W1 + WQ) =dimW; + dimWy — dim(W1 N Wg)

=(k+1)+ (n—k+1)—dim(W; N W>)

and rearranging this gives what we want. When n = 3, the only interesting possibility
is k = 1,2 and the result asserts that any projective line must intersect any projective



10.

plane. It is easy to see that this intersection point is unique dim(W;NWs) = 1 or the
line lies in the plane dim(W; N Ws) = 2.

Suppose that T' and 7" define the same projective transformation, then 7' = AT’ for
some A # 0.

Solution: Suppose [T7(v)] = [T'(v)] for all v € V'\ {0}. This implies 77 (v) = A(v)T'(v)
for some non-zero scalar A(v) which may a priori depend on v. We have to show that
it does not. So suppose v,w € V \ {0}. If v,w are linearly dependent, then it is
obvious from the definition of A\(v) that A(v) = A(w). So assume v,w are linearly
independent. Now

T'(v+w) =T )+ T (w) = Av)T(v) + Mw)T (w)

but also
T'(v+w) =Av+w)T(v+w) =Av+w)(T() +T(w))

Since T'(v) and T'(w) are also linearly independent this implies A(v) = A(v+w) = A(w),
which completes the proof.



