
Non-Euclidean Geometry (spring 2011)

Partial Solutions to Exercise No. 9

1. Show that the radius R of the inscribed circle in a hyperbolic triangle T = 4ABC is

given by:

tanh2 R =
cos2 α + cos2 β + cos2 γ + 2 cos α cosβ cos γ − 1

2(1 + cos α)(1 + cos β)(1 + cos γ)

Solution: We proved in Exercise no. 7 that the angle bisectors of T meet at a point

ξ at T . Denote by WC the point on the edge c for which ∠AWCξ = BWcξ = π/2. In

a similar manner we definte the points Wa and Wb. Check that the inscribed circle is

the circle centered at ξ passing through Wa,Wb and Wc. Next, denote x = ρH(A,Wc),

and y = ρH(Wc, B). Then

cos α cosβ + cos γ

sinα sinβ
= coshx cosh y + sinhx sinh y

From this we obtain that

[(cos α cos β + cos γ) − (sinα sinhx)(sinβ sinh y)]2 =

= [(1 − cos2 α) + sin2 α sinh2 x][(1 − cos2 β) + sin2 β sinh2 y]

The identity sin θ = (1+cos θ) tan(θ/2) together with the relation tanhR = sinhx tan(α/2)

yields sinα sinhx = (1 + cos α) tanh R. A similar relation holds for β, γ and R and

substituting yields (after some simplifications) the desired result.

2. Let α be the angle of parallelism (i.e., the angle at one vertex of a right hyperbolic

triangle that has two asymptotic parallel sides), and let b be the segment length

between the right angle and the vertex of the angle of parallelism. In class we proved

that cosh(b) sin α = 1. Show that this condition is equivalnet to the following:

(i) sinh(b) tan α = 1, (ii) tanh(b) sec α = 1, (iii) e−b = tan(α/2)

3. Prove that Γ = PSL(2, Z) is a discrete subgroup of PSL(2, R).

Solution: There are many ways to prove this. For example, you can use the following

criterion: The subgroup G ∈ SL(2, C) is discrete if and only if for every positive k

one has that {A ∈ G | ‖A‖ ≤ k} is finite. Here ‖A‖2 = (a2 + b2 + c2 + d2). If

this set is finite for each k, then G clearly cannot have any limit points (the norm

function is continuous) and so G is discrete. On the other hand, if this set is infinite

then there are distinct elements An in G with ‖An‖ ≤ k, for n = 1, 2, . . .. If An
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has coefficients (an, bn, cn, dn) then |an| ≤ k and so the sequence an has a convergent

subsequence. The same is true for the other coefficients, and using the well known

”diagonal process” we get a subseqence on which each of the coefficient converge. On

this subsequence, An → B say, for some B and as the determinante is continuous,

B ∈ SL(2, C), and thus G is not discrete. Using this criterion, it follows immediatly

that G ∈ SL(2, C) is discrete.

4. Find a fundamental domain in H
2 for the group Γ = {γn|γn(z) = 2nz}

5. Show that the following conditions on a subgroup G < SL(2, R) are equivalent: (i)

There are no accumulation points in G; (ii) G has no accumulation points in SL(2, R);

(iii) The identity is an isolated point of G.

Solution:

Remark: Note that condition (ii) is on the face of it somewhat stronger than (i). In

fact for general metric spaces X ⊂ Y , the conditions (i) and (ii) are not equivalent.

For example, suppose X = {1/n} ⊂ [0, 1] = Y . Then X has no accumulation points

in itself, so (i) holds, but it does have an accumulation point 0 ∈ Y , so (ii) fails. The

proof which follows shows that if X,Y are topological groups, then the two conditions

are the same.

(i) implies (ii): Suppose that (ii) fails so that gn → h for some h ∈ SL(2, R). Then

gng−1

n+1
→ hh1 = Id. Since G is a subgroup, Id ∈ G and hence (i) fails.

(ii) implies (iii) since if the identity is not an isolated point, then clearly (ii) fails.

(iii) implies (i): Choose a neighbourhood Id ∈ U such that G ∩ U = {id}. Then if

g ∈ G, we have G ∩ gU = {g} which implies (i).

6. (**) Let T ∈ Isom+(H) be parabolic. If S ∈ Isom(H) commutes with T , what can we

say about the group generated by S and T ?

7. How many points are there in the projective plane P(Z3
2)? How many lines? How

many points does each line contain? How many lines pass through each point?

Solution:

(a) The same argument as that given in lectures establishes that, for any field F, one

has P(F2) ' F t {∞} so that |P(F2)| = |F| + 1. When F = Z/2Z, this yields|P(F2)| =

2+1 = 3. Alternatively, we view P(F2) as F
2\{0}/ ∼ and observe that all equivalence

classes have the same size which is |F \ {0}| because, for any v ∈ F
2 \ {0}, the map

λ 7→ λv is a bijection from F \ {0} to the equivalence class of v. Since equivalence

classes partition, we have |P(F2)| = |F2 \ {0}|/|F \ {0}| = (22 − 1)/(2 − 1) = 3

(b) Either argue that P(F3) ' F
2 t F t {∞} so that |P(F3)| = 22 + 2 + 1 = 7 or that

|P(F3)| = |F3 \ {0}|/|F \ {0}| = (23 − 1)/(2 − 1) = 7. As for the lines in P(F3), a line

is determined by any pair of distinct points lying on it. There are 7 × 6/2 such pairs

and any particular line is equally well determined by any of the 3 pairs of the 3 points

on it. Thus there are 7 = 7 × 6/2 × 3 lines in the plane P(F2).
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(c) Fix a point, then there are 6 pairs that include that point and each determines

a line which is counted twice over: once for each of the other two points on the line.

Thus there are 6/2 = 3 lines through each point.

(d) The same arguments apply for the field with 3 elements: |P(F2)| = 3 + 1 =

4 = (32 − 1)/(3 − 1). Similarly, |P(F3)| = 13. Meanwhile, each line has 4 points

and is determined by any of the 6 pairs of point that lie thereon. In all, there are

13 × 12/2 = 13 × 6 pairs of points in P(F3) and thus 13 lines. Finally, there are 12

pairs that include a given point and each determines a line through that point which

is counted 3 times over, giving 4 lines through a given point.

8. Let P(V ) be a projective space of dimension at least 2 (thus dimV ≥ 3). Prove that:

(a) Distinct projective lines in P(V ) intersect in at most one point. (Very easy!)

(b) Distinct projective lines in P(V ) intersect if and only if they lie in some (unique)

projective plane.

(c) Give an example of two non-intersecting projective lines in P(R4).

Solution: (a) In class we proved that there is a unique line through two distinct

points. Thus distinct lines can intersect in at most one point.

(b) Let Li = P(Ui), i = 1, 2, be distinct lines in P(V ). Thus each Ui is a 2-dimensional

subspace of V and the lines meet if and only if U1 ∩ U2 6= ∅. In this case, we have

1 ≤ dim(U1 ∩ U2) < dimUi = 2 where the latter inequality is strict since U1 6= U2.

Thus the lines intersect if and only if dim(U1 ∩ U2) = 1. In this case,

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2) = 2 + 2 − 1 = 3

Thus, L1 and L2 lie in the projective plane P(U1 + U2). The converse, which uses a

similar argument is left as an exercise. For uniqueness, any projective plane P(W )

that contains L1 and L2 must have Ui ⊆ W and so U1 +U2 ⊆ W whence W = U1 +U2

since both have dimension 3.

(c) We just need linear subspaces Ui ⊆ R
4 with U1 ∩ U2 = {0}. For example, take

U1 = {(λ0, λ1, 0, 0), λ0, λ1 ∈ R} and U2 = {(0, 0, λ2, λ3), λ2, λ3 ∈ R}.

9. Let P(V ) be a projective space and P(W1), P(W2) ⊂ P(V ) distinct projective subspaces

of complementary dimension: dimP(W1) + dimP(W2) = dimP(V ). Prove that the

P(Wi) intersect. What does this tell us when dimP(V )) = 3?

Solution: let dimP(V ) = n and dimP(W1) = k so that dimV = n+1, dimW1 = k+1,

and dimW2 = nk + 1. We want to show that dim(W1 ∩ W2) ≥ 1. Now W1 + W2 ⊆ V

so that

n + 1 = dimV ≥ dim(W1 + W2) = dimW1 + dimW2 − dim(W1 ∩ W2)

= (k + 1) + (n − k + 1) − dim(W1 ∩ W2)

and rearranging this gives what we want. When n = 3, the only interesting possibility

is k = 1, 2 and the result asserts that any projective line must intersect any projective
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plane. It is easy to see that this intersection point is unique dim(W1 ∩W2) = 1 or the

line lies in the plane dim(W1 ∩ W2) = 2.

10. Suppose that T and T ′ define the same projective transformation, then T = λT ′ for

some λ 6= 0.

Solution: Suppose [T ′(v)] = [T (v)] for all v ∈ V \{0}. This implies T ′(v) = λ(v)T (v)

for some non-zero scalar λ(v) which may a priori depend on v. We have to show that

it does not. So suppose v, w ∈ V \ {0}. If v, w are linearly dependent, then it is

obvious from the definition of λ(v) that λ(v) = λ(w). So assume v, w are linearly

independent. Now

T ′(v + w) = T ′(v) + T ′(w) = λ(v)T (v) + λ(w)T (w)

but also

T ′(v + w) = λ(v + w)T (v + w) = λ(v + w)(T (v) + T (w))

Since T (v) and T (w) are also linearly independent this implies λ(v) = λ(v+w) = λ(w),

which completes the proof.
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