List of Theorems for the Exam

1) Every isometry f of \mathbb{R}^{n} is of the form $f(x)=A(x)+b$, where $A \in O(n)$ and $b \in \mathbb{R}^{n}$.
2) The only finite plane symmetry groups are C_{n} and D_{n} (cyclic and dihedral groups).
3) Let $L \subset \mathbb{R}^{2}$ be a lattice, and let $S(L)=\left\{g \in \operatorname{Iso}^{+}\left(\mathbb{R}^{2}\right) \mid g(L)=L\right\}$. If $g \in S(L)$ is a rotation, then it must be of order $2,3,4$ or 6 (crystallographic restriction).
4) In spherical geometry one has $\operatorname{Area}(\triangle A B C)=(\alpha+\beta+\gamma)-\pi$ (the radius of the sphere is assume to be 1).
5) Euler formula: for any convex polyhedron one has $V-E+F=2$.
6) The spherical laws of cosines (I and II).
7) There is no local isometry between \mathbb{R}^{2} and S^{2}.
8) The group $S O(3)$ is simple.
9) The isomorphism between $S O(3)$ and $\mathbb{R} P^{3}$ (using the quaternions).
10) Let $B \subset \overline{\mathbb{C}}$ be a disk. Then there is a unique circle in $\overline{\mathbb{C}}$ passing through two points $z_{1}, z_{2} \in \operatorname{int}(B)$ and invaraint with respect to the reflection in ∂B.
11) The hyperbolic laws of cosines (I and II).
12) In hyperbolic geometry one has $\operatorname{Area}(\triangle A B C)=\pi-(\alpha+\beta+\gamma)$
13) Isometries of the hyperbolic plane: $\mathrm{Iso}^{+}(\mathbb{H})=P S L(2, \mathbb{R})$ and $\mathrm{Iso}^{+}(\triangle)=P S U(1,1)$.
14) The theorem about the angle of parallelsim (Bolyai-Lobachevsky theorem):
15) The fundamental polygon of the modular group.
16) Desargues' theorem.
17) Pappus's theorem.
18) The fundamental theorem of projective geometry (the case of $\mathbb{R} P^{2}$).
