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1 Introduction

New lensless di¤ractive x-ray technic for micro-scale imaging of biological tis-
sue is based on quantitative phase retrieval schemes. A sample is illuminated
by a parallel beam of coherent X-rays; the intensity of the di¤racted pattern
(hologram) is registered at a plane detector. The distribution of attenuation
and refractivity in the sample are to be found. By incorporating refraction,
this method yields improved contrast compared to purely absorption-based
radiography but involves a phase retrieval problem. The linearized version of
this problem is known as the contrast transfer function model (CTF). This
model is applied to thin optically weak objects and the Helmholtz equa-
tion is replaced by the paraxial approximation. Maretzke and Hohage [1]
stated Lipschitz stability of reconstruction of objects with compact support.
Uniqueness of this problem was shown earlier by Maretzke [4]. The New-
ton�s method was applied for reconstruction in [2]. See more references on
the subject in [1], [2]. The method of phase contrast imaging can be applied
for resolving the refractive index of an unknown object in three dimensions
[3]. In the paper [6] the near-�eld phase retrieval problem has been proven to
be uniquely solvable for general compactly supported objects, given at least
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two independent intensity patterns recorded at di¤erent detector distances
or incident wavelengths.
Here a theoretically exact analytic method is proposed for reconstruction

of the ray integral complex refraction index of the object from the linearized
intensity obtained from one intensity pattern.

2 CTF-model

The ray integral
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where n = 1� �+ i� is the dimensionless refractive index of the object, � is
the attenuation function; z is the coordinate along the central ray, k is the
space frequency. The Fresnel number f is calculated by

f =
kb2

d
;

where z = d is distance to the detector, b is the diameter of the disc 

containing the support of  + � + i': The observable intensity I is related
to the image  by the nonlinear forward operator

I = jexp (D )j ;

where D is the Fresnel propagator generating the near �eld hologram. Ac-
cording to Paganin [5]

D( ) + exp (ikd)F�1(mfF ( )); mf (�) + exp
 
i j�j2

2f

!
and T = 2ReD ( ) is the linearization of I = jexp (D ( ))j. The function
� and � are uniquely determined from (1) [4] and the norm of the inverse
operator T�1 de�ned in L2 (
) is estimated by an exponential function of the
Fresnel number according to [1].
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3 The reconstruction method

Theorem 3.1 Functions ' and � with compact support can be found ana-
lytically from

1

2
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!
'̂+ cos

 
j�j2

2f

!
�̂ (2)

Proof. Here '̂ = F (') denote the Fourier transform with the kernel
exp (�i hx; �i) of a function ' on R2: Suppose that ' and � are supported
in the central disc 
 of radius b: To portray 
 as the central disc of radius
�; we introduce the coordinates yi = bxi=2�; i = 1; 2: We have j�j2 =2f =
�2=g; where �i = 2��i=b; i = 1; 2 are the corresponding coordinates on the
frequency plane and g = 8�2b�2f:

Lemma 3.2 For any k > �g; there exists a root tk > 0 of sin (�2=g) such
that jtk � kj � c < 1=4 for some c:

Proof. The points �j =
p
�gj; j = 0;�1;�2; ::: are roots of this

function. It is easy to see that for j � �g;

�j+1 � �j � � < 1=2; � = 1= (2 + 1=�g) :

Therefore for any k > �g; there exists a root �j(k) 2 (k � �=2; k + �=2) : We
set �k = �j(k): I
Set k (f) = [�g] and de�ne function

Sf
�
t2
�
=
sin ("t)

t

Y
k(f)
j=1

t2 � j2

t2 � (j�=")2
: (3)

The right hand side is a even function of t; it is bounded on the real axis
and has holomorphic continuation to the whole space since sin ("t) vanishes
on roots of denominator. Therefore it has holomorphic continuation Sf (�2)
to the complex plane which satis�es��Sf ��2��� � C exp (" jIm�j) : (4)

Choose " is so small that the supports of ' and � are contained in the disc
of radius �� "�: For an arbitrary unit vector � 2 R2; we evaluate both sides
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of (2) at � = tk� for k > k (f) : The �rst term vanishes and the cosine factor
is equal �1 hence

�̂ (�tk�) = (�1)k+1
1

2
T̂ ( ) (�tk�) ; k > k (f) : (5)

The function
M (�) = Sf

�
�2
�
�̂ (�)

belongs to L2 (R2) since Sf is bounded on the real line. On the other hand
by the Paley-Wiener theorem �̂ has holomorphic continuation which ful�ls

j�̂ (�)j � C exp ((1� ") jIm �j) ; � 2 C

and by (4)
jM (�)j =

��Sf ��2� �̂ (�)�� � C exp (jIm �j) :
For any unit vector �; function f (t) = M (t�) ful�ls jf (t)j = O (exp jIm tj)
and belongs to L2 (R) since the factor Sf (�2) is bounded on the real axis.
Therefore f̂ is supported in [��; �] and Theorem 5.1 (Sect.5) can be applied
to f and to the sampling of knots tj = j for j � k (f) and tj as in Lemma
3.2 for j > k (f). The values of f (tj) = M (tj�) are calculated by (5) for
j > k (f) and for j = 0; we set f (tj) = 0 for j = 1; :::; k (f) : Function M (t�)
is reconstructed by means of the series (7) that converges in L2 (R) for any
�: Finally we get

� (x) = F�1� 7!y

�
M (�)

Sf (�2)

����� y = b

2�
x (6)

The function ' is recovered in the same way by interpolation with knots at
roots of the cosine factor. I

4 Conclusion

The above arguments can be formulated as an algorithm:
Precomputations: choose a natural N that show the range of radial fre-

quencies of ' and � to be reconstructed. For given Fresnel number f; to
choose the sequence of real numbers �k; k = k (f) + 1; :::; N by the method
of to Lemma 3.2 completed by tk = 0; 1; :::; k (f) for k � k (f) : Values Sf (�k)
are to be calculated for k = k (f) + 1; :::; N: Next the function G is to be
calculated taking a �nite product as in (8).
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Algorithm: �rst step: for a unit vector �; formula (7) is applied for
values

f (�tk) = (�1)k+1
1

2
Sf
�
t2k
�
T̂ ( ) (�tk�) ; k = 0; k (f) ; :::; N

and for values f (tk) = 0 for 0 < k � k (f) : The construction is repeated for
� in a sampling in the unit circle su¢ cient for the chosen range of angular
frequency
Second step: the function M (��) obtained on the previous step is sub-

stituted in (6).
Third step: a similar procedure is applied for determination of ' by means

of interpolation with knots tk satisfying jtk � k � 1=2j � c < 1=4.

5 Appendix

Theorem 5.1 If jtk � kj � c < 1=4; k 2 Z for some c then for any function
f 2 L2 (R) such that f̂ is supported in [��; �] can be interpolated by

f (t) =
1X
�1

f (tk)
G (t)

(t� tk)G0 (tk)
; (7)

where

G (t) = (t� t0)
1Y
k=1

�
1� t

tk

��
1� t

t�k

�
: (8)

Series (7) converges in L2 (R) and the functions

Gk (t) +
G (t)

(t� tk)G0 (tk)
; k 2 Z

forms a Riesz basis in the space F (L2 [��; �]) : It follows the series (7) con-
verges in L2 (R) for any sequence ff (tk)g 2 L2. The constant 1=4 is maximal
possible.

This result follows from famous "1/4-theorem" of Mikhail Kadec�(Kadets)
see [8], [7]. For any constant c < 1=�2 this property was stated by Paley and
Wiener of 1934.
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