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1 Introduction

In this survey several papers related to the Radon transform appeared after
2013 are discussed. For the short survey of the �rst 100 years of the history
of the theory, I refer to historical notes in the books of Helgason [7] Natterer
[5] and in [50]. Pioneering papers of A. Cormack 1963-64 on "Representation
of a function by its line integrals" were devoted to medical applications [3].
Few years later he wrote that "his �rst mathematical problem had been already
solved by Radon�s theory". These papers triggered numerous applications of
the Radon transform to inverse problems. A fragment of the prehistory of these
applications was described by A. Cormack [4]: "In 1906 H. B. A. Bockwinkel
used a reconstruction formula of H. A. Lorentz in a paper on propagation of light
in biaxial crystals. Lorentz�s result was generalized by G. Uhlenbeck in 1925.
In 1936 H. Cramér and H. Wold proved their theorem on marginal distribution
(which is widely used in probability theory). Also in 1936 V. A. Ambartsumyan
found reconstruction procedures and used these to calculate the distribution
of velocities of stars from their radial velocities in various directions. This is
the �rst numerical inversion of the Radon transform and it gives the lie to the
often made statement that computed tomography would be impossible without
computers.� In 1947 J. Szarski and T. Wa·zewski presented a reconstruction
procedure by starting from an elementary method which the Polish physician
M. S. Majerek 1932 used for the reconstruction of the human head from X-ray
pictures of it taken from various directions. R. N. Bracewell ran into Radon�s
problem investigating the sun about 1956."

2 The classical Radon transform

Helgason-Ludwig conditions

Ruhlandt et al [8] describe an iterative algorithm of reconstruction of pa-
rameters of 3D object illuminated by a monochromatic high frequency plane

1



wave whose phaseless near-�eld is detected. The back propagation provides a
rude approximation at each step of the algorithm. Helgason-Ludwig consistency
conditions are used to improve reconstruction of low frequencies of images taken
from di¤erent angles. This helps to retriev the phase and improve evaluation of
the attenuation and refraction coe¢ cients of the object.

Photoacoustic reconstructions

Elbau and Scherzer [9] have considered a model for photoacoustic plane sec-
tional imaging with integrating half-cylinder shaped acoustic detector serving
as focusing detector. ?Haltmeier et al [11] analyzed reconstruction in thermoa-
coustic tomography with a non standard acquisition geometry. The integral
data is registered on many planes tangent to boundary of spherical cavity as
a short time series. They obtain approximate reconstruction formulas for the
case of constant acoustic speed.
Reconstruction formulae for photoacoustic transform are known for the cen-

ter sets which are spheres, ellipsoids or more complicated algebraic compact
sets Z; a survey is given in [50]. Fawcett [23] and Anderssen [24] considered
the problem for the central set Z = fx1 = 0g and functions f supported in the
half-space. This acquisition geometry is signi�cant for the SAR technic. Faw-
cett�s method was based on the backprojection of the function g = Rf where
g (y; r) is the spherical integral a function f with the center y 2 Z of radius r:
The backprojection is given by the improper integral

R�g (x) =

Z
Z

g (y; jx� yj) dy:

This integral diverges for any x such that f (x) > 0 if f is continuous and
non-negative since g (y; jx� yj) has the positive limit as y !1. Therefore the
backprojection does not exists on an open set. Andersson�s method is based on
the Fourier transform of the function g: This method is also not complete since
the Fourier transfrom F (g) is not a point function and further steps in [24] have
to be approved.
Haltmeier and Perversyev [13], [14] stated reconstruction for non compact

second order hypersurfaces Z that can be approximated by ellipsoids. The au-
thors apply the reconstruction formula for ellipsoids that was known since([6]
and [46]). The problem of convergence of the improper integrals is not in the
focus in this papers. The case of elliptic cylinders Z was addressed again by
Haltmeier and Moon in [15]. The authors apply the reconstruction method of
BPF type (backprojection-�ltration) which does not work since the backpro-
jection is not well de�ned. We show in the Addendum that the FBP method
is applicable for Fawcett-Andersson�s case Z = fx1 = 0g as well as for any
quadratic Z.

Ray transform of tensor �elds

Evaluation of residual elastic strain is used for study of structure of com-
plicated materials. The strain tensor has six components in three dimensions.
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Tomographic approach is applied for the reconstruction of small residual strain
�elds in a body from data of di¤raction patterns under penetrated x-ray or
neutron radiation. The mathematical model is the longitudinal (axial) line
transform X" of a strain tensor ". This data is gauge invariant since all the
integrals vanish if " is a potential tensor; that is, " = Du for small deformations
u.
The polarization tomography is another method of reconstruction of a strain

�eld in a transparent solid. It is based on measurements of transformation of
the polarization ellipse of the penetrating light. The mathematical model is the
line integral transform T" of the traceless normal part of the stress �eld ": An
analytic algorithm of complete reconstruction of an arbitrary strain tensor "
from non-redundant data of ray integrals X" and T" will be described.
A series of paper was published on reconstruction of vector plane �elds from

ray or line integrals. An exact reconstruction was done in [1] from data of all
line integrals. Denisjuk [17] considered reconstruction of the solenoidal part of a
tensor �eld of arbitrary degree from ray integrals i9n a �at space. Sharafutdinov
[18] applied exact reconstruction from integral data for lines parallel to one of
three plane in general position. According to [44] data of �rst derivatives of the
line integrals are su¢ cient for stable reconstruction if the lines meet the source
curve � satisfying Tuy�s condition. Similar results were obtained later in [20]
and [21]. The authors impose a di¤erent geometric condition: any plane P in
R3 that meet the support of the unknown function must have at least 3 common
points with �: According to [44] only one point in P \ � is necessary where 3
�rst order derivatives of the ray data are known. Note that a line integral of
vector �eld depends on the euclidean structure of the space whereas the integral
of one form does not. The number 3 is minimal anyway since the �rst order
di¤erential form has 3 components. Some improvements to the method are done
in [22].
Paternain, Salo and Uhlmann [16] have shown that on simple Riemannian

surface the geodesic axial transform acting on solenoidal symmetric tensor �elds
of arbitrary order is injective. It is shown in [48] that in the Euclidean 3-
space the strain 2-tensor can be reconstructed from data of the longitudinal
and of the traceless normal integrals. Sharafutdinov [19] develops the theory
of magneto-potoelasticity for determination of dielectric tensor " of a medium
by application of the exterior magnetic �eld. In the linear approximation, the
traceless transversal part of " is evaluated in terms of the integrals of the gyration
�eld along rays corresponding to the refraction coe¢ cient of the medium. This
tensor " may be related to the tensor of mechanical stress.

Cone Radon transform

The cone of rotation in an Euclidean space En can be written in the form

C (�) = fx 2 En : �x1 = rg ; � > 0; r2 = x22 + :::+ x2n

in a coordinate system. The line r = 0 is the axis and � + arctan� is the
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half-opening of the cone. The integral operator

D�;kf (y) =

Z
x2C(�)

f (y + x) jxj�k dS; y 2 En

is discussed in recent publications under the name of cone Radon or cone trans-
form. Here dS is the Euclidean hypersurface element. This transform is called
regular in the case k < n � 1 and singular in the case k = n � 1. The realistic
model of point spread function for single-scattering optical 3D tomography is
based on the photometric law of scattered radiation modelled by the singular
cone transform.
This method provides multiple views of the object which can be considered

as a Radon-type cone transform of the photon source distribution. Cree and
Bones [28] proposed reconstruction from data of the regular cone transform on
R3 with apices restricted to a plane orthogonal to the axis and all openings. An-
alytic reconstructions from the regular cone transform with restricted apex were
obtained by Nguyen and Truong [30], Smith [31], Grangeat et al [32], Maxim
et al [33], Maxim [34], Haltmeier [25], Terzioglu [37], Kuchment and Terziogly
[38], Moon [40]. Papers [33], Maxim [34] contains representative numerical re-
constructions. These reconstructions are based on the reduction of redundant
data of cone integrals for all openings. These data is converted to the Radon
transform in several ways e. g.Z �

0

D�;0fd� = cnR
�Rf

where R� is the back projection operator for the Radon transform R. Jung and
Moon [39] obtained inversion formulae for the regular cone transform on Rn

using non redundant data from a line of detectors and rotating axis. In [26]
and [27] other reconstruction methods were proposed based on the integral data
from all cones with apices on a sphere and all openings.
Basko et al [29] proposed a numerical method based on developing the un-

known function into spherical harmonics from cone integrals with swinging axis
and only one opening. Gouia-Zarrad and Ambartsoumian [36], [35] found the
reconstruction formula for the regular cone transform on a half-space with free
apex and one opening. This paper contains new reconstruction formulas for re-
construction of an unknown density function on the half-space from its weighted
integrals over cones with constant axis and apex running the half-space. In the
regular case (the weight density is integrable over the cone) the cone transform
is the convolution with a distribution supported by the cone. In [51] a recon-
struction from a regular cone transform D�;k with constant axis and opening
on R3 is given in terms of the operator D�;1�k. This approach does not work
when the weight density is not integrable. Then the cone integral data can not
be collected for all positions of the apex. A more complicated reconstruction
method is proposed in [51] from data of cone integrals with apices running a 1D
set. The inversion formula for the nongeodesic Funk transform is applied (see
below).
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3 The general Funk-Radon transform

There is a variety problems of integral geometry that have similar features with
the classical Funk and Radon transforms. A systemization of this variety can be
done using the term geometric integral transforms. Let X be a smooth manifold
of dimension n > 1 and dX be a volume form on X; we call (X;dX) the physical
space. Another smooth manifold � of the same dimension n plays tho role of the
registration space. Take a smooth real function � on X � � (called generating
function) satisfying the condition:
i) dx� 6= 0 and d�� 6= 0 on the set Z + f� = 0g where dx� + d�� = d�:

We have d� = 0 on Z hence these inequalities are equivalent.
It follows that the set Z is a smooth manifold of dimension 2n�1 and Z� +

f� (�; �) = 0g ; Zx + f� (x; �) = 0g are smooth hypersurfaces in X; respectively
in �: The projections pX : Z ! X and p� : Z ! � have rank n: The geometric
integral transform is de�ned by

M�f (�) = lim
"!0

1

2"

Z
j�(x;�)j�"

fdX

for a integrable function f on X with compact support. It is well de�ned for
almost any registration point � 2 �.
The classical Radon transform ful�ls (i) forX = Rn; � = R�Sn�1; � (x; p; !) =

p�hx; !i : The Funk transform ([1] (n=2), Helgason 1959 (even n), Semjanistiy
1961 (odd n)) is obtained for X = Sn; � = Sn; � (x; �) = hx; �i : The relation
between Radon transform MR ([2]) and the Funk transform MF can be written

in the form MR (f) (p; !) =
�
1 + p2

��1=2
MF (g) (�) ; where

g

��
1 + jxj2

��1=2
x

�
=
�
1 + jxj2

�n=2
f (x) :

This relation is extended for the totally geodesic transformation of on hyper-
bolic space of constant curvature by means of the central projection in En+1

(gnomonic projection ).
Let w be a smooth function on X ��: The Funk-Radon transform with the

weight w is de�ned by the integral

M�;wf (�) + lim
"!0

1

2"

Z
j�(x;�)j�"

w (x; �) f (x) dX =

Z
Z(�)

w� (�) fdX:

If a function f is supported by a compact K; thenM�;wf is supported by the set
� = p�p

�1
X (K) that is also compact, since pX is a proper map. The propriety

of M� holds also for the operator M�;w for any smooth weight w:

Properties of the general Funk-Radon transform

Let E (X) be the space of smooth functions on X and D (X) be the subspace
of smooth functions on X with compact support.
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Proposition 1 If a generating function � satis�es (i), then the backprojection
transform M� : D (�)! E (X) is well de�ned by

M�
� (') (x) = lim

1

2"

Z
j�j�"

'd�

and M� de�nes a continuous operator E 0 (X)! D0 (�) by

M� (u) (') = u (M
�
� (')) ; ' 2 D (�) :

Proposition 2 For an arbitrary distribution f with compact support on X;

WF(M�f) � [ (�; �) 2 T �0 (�) : 9x 2 X : � (x; �) = 0; �kd�� (x; �) ;

(x; dx� (x; �)) 2WF(f) :

This result is known in several particular cases. Suppose that the only set
WF(M�f) is known. Then a point (x; �) 2 T � (X) can be recognized as a point
in WF(f) if there exists a point � such that � (x; �) = 0; (�;d�� (x; �)) 2
WF(M�f) and dx� (x; �) k �: A point (x; �) 2 WF(f) may not be recognized
in this way, if there is a point y 6= x such that dx� (y; �) k �:
The following condition is more strong than (i)
(i+) the map D : Z � (R n 0) ! T � (X) n 0 is a di¤eomorphism, where

D(x; �; t) = (x; tdx� (x; �)) : This condition is equivalent to the following. the
map

DS : Z ! S� (X) ; DS (x; �) =

 
x;

dx� (x; �)

jdx� (x; �)jg

!
is a di¤eomorphism where g is an arbitrary Riemannian metric on X and S� (X)
means the bundle of unit spheres in the cotangent bundle. This implies that pX
is a proper and for any x 2 X; Z (x) is di¤eomorphic to a n� 1-sphere.

Proposition 3 [45]If � ful�ls (i+), then M� can be extended to a bounded
operator M� : H

�
K (X) ! H

�+(n�1)=2
� (�) for any � 2 R; an arbitrary compact

set K � X and � = p�
�
p�1X (K)

�
:

Points x; y 2 X are called conjugate for a generating function �, if x 6=
y; � (x; �) = � (y; �) and d�� (x; �) k d�� (y; �) for some � 2 �:
We call the generating function � regular, if it satis�es condition (i+) and

(ii) there are no conjugate points.
This condition under the name "Bolker condition" was introduced by E

Quinto [56] in a more general situation.
Homan and Zhou [57] de�ne "Generalized Radon transforms" in a slightly

di¤erent way by means of the "de�ning" function ' = ' (x; �) that is positive ho-
mogeneous of degree 1 in � 2 Rn. The generating function � (x; �) = s�' (x; �)
de�nes the same acquisition geometry for � = (s; �) : The global Bolker condi-
tions formulated by the authors plays role of "absence of conjugate points".
The author focus on injectivity of the weight integral transform that essentially
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coincides with the operator M�;w: They show injectivity and stability for an
open, dense subset of generalized Radon transforms with analytic de�ning func-
tions satisfying the Bolker condition. Homan and Zhou [57] de�ne "Generalized
Radon transforms" in a slightly di¤erent way. To the "de�ning" function '
corresponds the generating function � (x; s; �) = s � ' (x; �) that is positive
homogeneous of degree 1 in � and � = (s; �) : The global Bolker conditions for-
mulated by the authors plays role of "absence of conjugate points". The author
focus on injectivity of the weight integral transform that essentially coincides
with the operator M�;w: They show injectivity and stability for an open, dense
subset of generalized Radon transforms satisfying the Bolker condition.

Parametrix on Sobolev spaces

Let X and Y be compact manifolds with boundaries of class C�; where � is
a natural number. The Sobolev spaces H� (X) and H� (Y ) are well de�ned for
any real �; j�j < �.
De�nition. We say that a linear operator A : L2 (X) ! L2 (Y ) with a

dense domain is a Sobolev operator of order d 2 R (or �d-smoothing operator
if d < 0) if it de�nes a bounded operator A : H� (X) ! H��d (Y ) for any
�; j�j < �; j�� dj < � which is a restriction of A for positive � and a closure
of A for negative �:
De�nition. For a number s > 0; an operator P : L2 (Y ) ! L2 (X) is said

a s-parametrix for A if it is an Sobolev operator of order �d and

R = Id� PA

is a s-smoothing operator (called the remainder). If P1 is a 1-parametrix and
R1 is a remainder, then for any natural k; a k-parametrix Pk can be found
for any natural k recursively by Pk = Pk�1 � Rk�1P1; Rk = �Rk�1R1 for
k = 2; :::; �: Any 1-smoothing operator is compact on L2 (X) hence P1A is a
Fredholm operator and the image of A is closed. A s-parametrix Ps recovers
the singularity of an arbitrary function f 2 H� (X) from Af up to a function
h = Rsf 2 H�+s (X) : In particular, if f = �y is the delta-function at a point
y 2 X and s > n then the function h = Rs�y is continuous. In fact, we
have �y 2 H� (X) for any � < �n=2 which implies h 2 H�+s (X) : The space
H�+s (X) is contained in C (X) if we take � > n=2 � s hence h is continuous.
The equation PsA�y = �y + h shows that any delta function can be recognized
from data of A�y by means of a s-parametrix Ps.
A parametrix operator recovers not only the wave front of a function f but

also the pro�le of its singularity.

Singular integral operators

Let En be a Euclidean space of dimension n � 1; and let a (x; s) be a locally
bounded function on En � Enn0. Consider an integral transform A de�ned by

Af (x) = lim
"!0

Z
jsj>"

a (x; s) f (x+ s) ds (1)
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for functions f 2 L2comp (En) : Let S be the unit sphere in En:

Theorem 4 Let a0 be a locally bounded on En� S and positively homogeneous
function of degree �n in variables s ful�lling the conditionZ

S

a0 (x; s) d
 (s) = 0; x 2 En; (2)

where d
 is the Euclidean measure on the unit sphere. Then (1) de�nes a
continuous operator A : L2comp (En)! L2loc (E

n) :

This is a simpli�ed version of the Calderon-Zygmund theorem [43].

Theorem 5 Let
a (x; s) = a0 (x; s) + r1 (x; s)

be a kernel supported on X � Enn0 of class C� for some natural �; a0 is a
homogeneous function of s of degree �n satisfying (2) and with remainder r1
that ful�ls

max
i+j��

max
x2X

jsji+n
��risrjxr1 (x; s)�� � C jsj (3)

where C is a constant. Then for any compact set X � En with a boundary of
class C�; operator A de�ned in (1) is a Sobolev operator on L2 (X) of order 0.

Construction of the parametrix

A parametrix for a class of integral operators M�;w was constructed by
Beylkin [42] in terms of the Fourier integral operators.
An exact inversion of the transform M�;w is only known for special types

of acquisition geometries � see a survey in [50] while a parametrix can be con-
structed for a wide class of geometries. Pestov and Uhlmann [52] gave a con-
struction of an approximate inversion for the geodesic integral transform on
simple Riemannian surfaces. The reconstruction formula of Natterer [6] pro-
vides a parametrix for photoacoustic acquisition geometry. The construction of
a parametrix for general geometry is described below following [49] with some
modi�cations.

Theorem 6 Let � be a regular generating function and w 6= 0 is a smooth
function on X � � and dX = dx1 ^ ::: ^ dxn for some coordinate functions
x1; :::; xn on X: Then the operator

P�;wg (x) =
(n� 1)!
jnDn (x)

Z
�

g (�)

w (x; �) � (x; �)
n
� ^ d�� (x; �) (4)

de�ned for even n and g 2 Cn (�) and

P�;wg (x) =
1

2jn�1Dn (x)

Z
�

�(n�1) (� (x; �))

w (x; �)
g (�) 
� ^ d�� (x; �) (5)
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de�ned for odd n and g 2 Cn�1 (�) is a parametrix for M�;w; where


� =
1

(n� 1)!r� ^ (d�rx�)
^(n�1)

;

Dn (x) =
1

jSn�1j

Z
Z(x)


�
jr� (x; �)jn ;

and
R�;w = Id� P�;wM�;w

is an operator of Sobolev order -1.

The wedge product (d�rx�)^(n�1) is de�ned by means of the exterior prod-
uct of n vectors and the wedge product of one-forms. Singular integrals (4),(5)
are de�ned as in [50], A.5.1.
The di¤erential form in (4-5) can be written in the form looking similar to

classical inversion integral


� ^ d�� (x; �) = jr� (x; �)jn '� (
n�1)

where

' : �! Sn�1; ' (x; �) =
dx� (x; �)

jdx� (x; �)j
:

In fact, the forms '� (
n�1) and d�� are analogous of the angular form d! and
the di¤erential dp in the inverse Radon transform formula, respectively. The
appearing factor jr�jn balances the denominator �n making the quotient cali-
bration independent.
Remark. An explicit inversion of the operator M�;w is well known in the

case of attenuated Radon transform on a plane that is w (x; �) is the integral
along the line � of a known function (attenuation coe¢ cient) from in�nity to the
point x: In the general case existence of a Sobolev parametrix does not imply
injectivity of M�;w:
Stefanov and Uhlmann [54] constructed an approximate time reversal opera-

tor for medium with variable sound speed in a compact domain (non trapping).
The time reversal is a Fredholm operator with convergent Neumann series. It
is not shown that the remainder is a smoothing operator. Ilmavirta [55] studies
the reconstruction problem in R3 for the weighted line transform of unknown
�eld of Hamiltonian 3-matrices. He considers this as the model for tomography
of the earth from data of neutrino oscillations emanated by the arti�cial sources.
The author stated uniqueness of reconstruction under simplifying assumptions.

4 Addendum

Photoacoustic reconstruction with non compact centers set
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Theorem 7 Let Z be the zero set of an elliptic second order polynomial p in
En: Any function f 2 Cn�1 (En) with compact sup in H = fp < 0g can be
reconstructed by the formula

f (x) = j1�np (x)

Z
Z

�
1

r

@

@r

�n�1
Rf (r; �)

r

����
r=jx��j

d�

dp
(6)

for odd n; and by

f (x) = 2j�np (x)

Z
Z

d�

dp

Z 1

0

dr2

jx� �j2 � r2

�
1

r

@

@r

�n�1
Rf (r; �)

r
(7)

for even n from data of spherical integrals

Rf (r; �) =

Z
jx��j=r

f (x) dS; � 2 Z: (8)

A proof is given in [50], p.102.

Corollary 8 Reconstructions (7) and (6) hold for any second order polynomial
p on En that is non negative on En+:

Proof. For simplicity we assume that p = x1 and take the sequence of
polynomials

p" = " jxj2 � 2x1
The cavity H" = fp" < 0g is the ball of radius "�1=2 in the upper half-spaceEn+
with the center x1 = "�1=2::: The sphere Z" = fp" = 0g is contaned in E+
and contains the origin. We have p" ! p0 = �2x1 andZ" ! Z0 = fp0 = 0g
uniformly on any compact set in En+ as "! 0; and Z0 is boundary of H0 = E+.
We apply Theorem 7 to p" and show that the integral has the limit as "! 0:We
have�
1

r

@

@r

�n�1
Rf (r; �)

r
=
@nr Rf (r; �)

rn
+ (n� 1) @

n�1
r Rf (r; �)

rn+1
+ :::+ cn

Rf (r; �)

r2n�1

For any function f 2 Cn with compact support, we have by (8)��@krRf (r; �)�� � C1min (r; 1)n�1�k ; k � n� 1
where C1 does not depend on r and � 2 Z: Therefore for r = jx� �j ;�����

�
1

r

@

@r

�n�1
Rf (r; �)

r

����� � C2
(r + 1)

n =
C2

(jx� �j+ 1)n (9)

for some constant C2: This shows that the integrand in (6) for p = p0 converges
absolutely uniformly for � 2 E+; r > 0 and x 2 suppf: The spheres Z" are
convex, contained in H0:We have Z" ! Z0 in the obvious geometric sense. This
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together with (9) guarantee that the limit in (6) as " ! 0 can be done under
integral and tends to the volume form d�=dp0 uniformly. We can do the same
in the reconstruction (7). I

Exact inversion of the geometric integral transform

Let X and � be manifolds of dimension n with volume forms dX and d� and
� = �(x; �) be a regular generating function de�ned on X � �. The singular
integral

Qn (x; y) =

Z
Z(y)

(� (x; �)� i0)�n d�

d�� (y; �)
(10)

is well de�ned for any x; y 2 X; y 6= x and is a continuous function. We have

ReQn (x; y) =

Z
Z(y)

� (x; �)
�n d�

d��
;

ImQn (x; y) =
�

(n� 1)!

Z
Z(y)

�(n�1) (� (x; �))
d�

d��
:

Theorem 9 Suppose that dX = dgX is the volume form of a Riemannian
metric g on X and � is a regular generating function � satisfying condition
(iii):

Re inQn (x; y) = 0 for all x; y 2 X such that x 6= y: (11)

Then an arbitrary function f 2 Cn (X) with compact support can be recon-
structed from data of M�f by the formula:

f (x) =
(n� 1)!
jnDn (x)

Z
�

M�f (�) d�

� (x; �)
n (12)

for even n; and by

f (x) =
1

2jn�1Dn (x)

Z
�

�(n�1) (� (x; �))M�f (�) d� (13)

for odd n where

Dn (x) =
1

jSn�1j

Z
Z(x)

1

jdx� (x; �)jng
d�

d�� (x; �)
: (14)

The integral (12) or (13) converges to f uniformly on any compact set K � X:

Hyperplane sections of an ovaloid

Let X be an ovaloid in the Euclidean space En+1 that is a compact smooth
convex hypersurface. Let � be a ellipsoid contained in the interior of X. It
can be de�ned by the equation q (�) = 1; � 2 En+1 where q is a second order
polynomial on En+1 with positive principal part q2. Any hyperplane H tangent
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to � can be written in the formH = fx; hx� �;rq (�)i = 0g for some � = H\�:
The intersection X \ H is a smooth n � 1 manifold. It can be de�ned by the
generating function

� (x; �) = hx� e;rq (�)i � r; x 2 X; � 2 �

where e is the center of � and r = 2� 2q (e) : For � = � + e; wed have q (�) =
q2 (�)+q (e) since the linear part q1 (�) of q vanishes. Therefore q2 (�) = q (�)�
q (e) and by the Euler identity we have

h� � e;rq (�)i = h� ;rq2 (�)i = 2q2 (�) = 2 (q (�)� q (e)) = 2� 2q (e) = r

hence hx� e;rq (�)i � r = hx� �;rq (�)i for any � 2 �.
Let g be a Riemannian metric on X. The integral transform M� generated

by � and by the Riemannian volume form dgX is

M�f (�) =

Z
Z(�)

fdgX

dx�
:

where dx� = hrq (�) ;dxi : We take the quotient d� = dV=dq as the volume
form on �; where dV is the volume form on En+1:

Theorem 10 Let X, � and � be as above. Let �0 2 � and Y = fx : � (x; �0) > 0g.
For any odd n � 3; an arbitrary function f 2 Cn�10 (X) supported by Y can be
recovered from M�f by

f (x) =
1

2jn�1Dn (x)

Z
�

�(n�1) (� (x; �))M�f (�) d�: (15)

For any even n; any f 2 Cn0 (X) supported by Y can be reconstructed by

f (x) =
(n� 1)!
jnDn (x)

Z
Sn

M�f (�)

� (x; �)
n d�; (16)

where for any n;

Dn (x) =
1

jSn�1j

Z
Z(x)

1

jdx�jng
d�

d��
(17)

where Z (x) = f�; � (x; �) = 0g :

Proof. We check that � satis�es conditions (i+), (ii) and (iii) of Theorem
9. We have

@x� = rq (�) ; @�� =


x� e;r2q (�)

�
; @x@�� = r2q (�) :

Let t = (tx; t0) be a n+ 1-vector such that tJ = 0. We have

htx;rq (�)i = 0;


tx + t0 (x� e) ;r2q (�) d�

�
= 0:

The �rst equation means that tx is tangent to �. The second one yields tx +
t0 (x� e) = 0 since the quadratic form r2q (�) is not singular. This equation
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is implies tx = 0 and t0 = 0 since tx is tangent to � and the vector x � e is
not. This proves (i+). Condition(ii) is easy to check. To verify (iii), we have
to show that the integral

Qn (x; y) = Re i
n

Z
Z(y)

1

(� (x; �)� i0)n
d�

hy � e;d�i (18)

vanishes for arbitrary x; y 2 Xt; y 6= x: Note that this integral does not depend
on X: The set Z (y) is an ellipsoid of dimension n � 1 > 0: Check that the
linear function � (x; �) has a zero on Z (y). Let P be the plane through x; y
and e: The line L through y and x does not touch � since x; y 2 X� see the
picture below Let L1; L2 � P be the rays started from y tangent to the ellipse
P \ � at �1 and �2; respectively. The vectors n1 = rq (�1) ; n2 = rq (�2) are
the exterior normals. Function hx� y;rq (�)i is continuous on this set Z (y)
and its values hx� y;rq (�1)i > 0 and hx� y;rq (�2)i < 0 have di¤erent signs
see pict.1. Therefore this function has a zero �0 on Z (y) : It follows � (x; �0) =
� (y; �0) + hx� y; �0i = 0, hence � (x; �0) also has a zero. The integral (18) is
taken over the n�1-dimensional ellipsoid Z (y) = f� 2 �; � (y; �) = 0g against
volume form

d�

hy � e;d�i =
dV

dq ^ hy � e;d�i :

Change coordinates � = A� + e on En+1 where A is a constant matrix such
that q (A� + e) = j�j2 : Then dV (A� + e) = const d�1 ^ ::: ^ d�n+1; dq = 2�d�
and hy � e;d�i = hs;d�i for some constant s 2 En+1 hence the volume form in
the right side of (18) is equal to

const
dV

�d� ^ hs;d�i = const

n
hs;d�i = const 
n�1

where 
k denotes the volume form of the euclidean k-sphere. The function
� (x; �) is a linear function on the sphere Sn�1 that changes its sign. By
[50],Theorem A.20 Qn (x; y) = 0 for x 6= y Q.E.,D. I
Remarks. Convexity property of X can be be replaced by the condition

dx� (x; �) j T (X) 6= 0 for any point (x; �) such that � (x; �) = 0:
The analogon of this theorem holds for any ellipsoid � contained in the

exterior part of a strictly convex ovaloid X: Let X+ be set of points x 2 X
such that the tangent plane Tx separates X and � except occasionally tangency
points. The reconstructions (15) and (16) are true for any function f supported
by X+:
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***

Proposition 11 Map D is a local di¤eomorphism if and only if detJx;� (�) 6= 0
on Z; where

Jx;� (�) =

0BBBBB@
@�
@x1

@2�
@x1@�1

::: @2�
@x1@�n

::: ::: :::
@�
@xn

@2�
@xn@�1

::: @2�
@xn@�n

0 @�
@�1

::: @�
@�n

1CCCCCA (19)

and x1; :::; xn; �1; :::; �n are arbitrary local coordinates on X and �; respectively.
Vice versa, if D is a local di¤eomorphism then det Jx;� (�) 6= 0.

***
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