Reconstructions from integrals over non-analytic manifolds

Victor Palamodov

January 7, 2018

Abstract The known integral transforms of Funk-Radon type are applied to manifolds which have algebraic structure (planes, spheres, ellipsoids, hyperboloids, paraboloids etc.). A variety of new exact reconstructions is described in this paper for the integral transforms on arbitrary smooth manifolds X^n embedded in an affine space E^{n+1} with an additional structure.

¹⁰ MSC (2010) Primary 53C65; Secondary 44A12

1 Introduction

Any even function defined on 2-sphere is reconstructed from its integrals over big 12 circles by means of the classical Minkowski-Funk formula [1]. It was generalized 13 by Helgason [4] and Semyanistiv [3] for the geodesic transform on spheres of 14 arbitrary dimension. For the non-geodesic Funk transform, there are inversion 15 formulas similar to that for the Funk transform. These formulas [6] and used 16 in [9] for inversion of the singular cone integral transform. Here we obtain 17 generalizations for arbitrary open smooth hypersurfaces X in an affine space. A 18 function f defined on X is integrated over intersections of X with hyperplanes 19 tangent to an ellipsoid Σ (called *katod*). The exact reconstruction of the function 20 is possible if there are no collinear points x, y, σ such that $x, y \in \text{supp} f, \sigma \in$ 21 Σ . Note that no reconstruction is known so far for functions on non-analytic 22 submanifolds X of an affine space. 23

24 **2** Preliminaries

Let X and Σ be manifolds of dimension n > 1 and Φ be a real smooth function defined on $X \times \Sigma$ such that $d\Phi(x, \sigma) \neq 0$ as $\Phi(x, \sigma) = 0$. The (generalized) Funk-Radon transform M_{Φ} generated by Φ is defined by

$$M_{\Phi}f(\sigma) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{|\Phi| \le \varepsilon} f dX = \int_{Z(x)} f(x) \frac{d_{g}X}{d\Phi}, \ \sigma \in \Sigma$$
(1)

where $d_g X$ is a volume form on X of a Riemannian metric g and $Z(x) = \{\sigma : \Phi(x, \sigma) = 0\}$. Condition I: $D_{\Phi} : Z \to S^*(X)$ is a diffeomorphism, where

 $Z=\left\{ \left(x,\sigma\right):\Phi\left(x,\sigma\right)=0\right\} ,\ S^{*}\left(X\right)$ is the bundle of unit cotangent vectors on X and

$$D(x,\sigma) = \|d_x\Phi\|_{g}^{-1} d_x\Phi(x,\sigma).$$

where $\|t\|_g$ means the g norm of a covector t at a point $x \in X$. This implies that for any $x \in X$, the set $Z(x) = \{\sigma : \Phi(x, \sigma) = 0\}$ is diffeomorphic to the sphere S^{n-1} . Points $x, y \in X$, $x \neq y$ are called *conjugate* if $\Phi(x, \sigma) = \Phi(y, \sigma) = 0$ and $d_{\sigma}\Phi(x, \sigma) \parallel d_{\sigma}\Phi(y, \sigma)$ for some $\sigma \in \Sigma$. Condition **II**: there are no conjugate points. For any smooth volume form $d\Sigma$ on Σ , the integral

$$Q_n(x,y) = \int_{Z(y)} \left(\Phi(x,\sigma) - i0\right)^{-n} \frac{\mathrm{d}\Sigma}{\mathrm{d}_{\sigma}\Phi(y,\sigma)}, \ Z(y) = \{\sigma : \Phi(y,\sigma) = 0\}$$

is well defined for any $x, y \in X, y \neq x$ since of conditions I and II.

Theorem 1 Let Φ be a smooth function on $X \times \Sigma$ satisfying I, II and condition III:

$$\operatorname{Re} i^{n}Q_{n}\left(x,y\right)=0 \text{ for all } x,y\in X, \ x\neq y.$$

- ² An arbitrary function $f \in L_{2}(X)$ with compact support can be reconstructed
- ³ from the Funk-Radon transform by

$$f(x) = \frac{1}{2j^{n-1}D_n(x)} \int_{\Sigma} \delta^{(n-1)} \left(\Phi(x,\sigma)\right) M_{\Phi} f(\sigma) d\Sigma$$
(2)

4 for any odd n, and by

$$f(x) = \frac{(n-1)!}{j^n D_n(x)} \int_{\Sigma} \frac{M_{\Phi} f(\sigma) \, d\Sigma}{\Phi(x,\sigma)^n}$$
(3)

 $_{5}$ for even n, where for any n

$$D_n(x) = \frac{1}{|\mathbf{S}^{n-1}|} \int_{Z(x)} \|\mathbf{d}_x \Phi(x,\sigma)\|_{\mathbf{g}}^{-n} \frac{\mathrm{d}\Sigma}{\mathrm{d}_\sigma \Phi(x,\sigma)}.$$
 (4)

⁶ In both cases $M_{\Phi}f \in W_2^{(n-1)/2}(\Sigma)$ and integrals (2), (3) converge in quadratic ⁷ mean on any compact set in X. If $f \in \mathcal{C}_0^{n-1}(X)$, respectively $f \in \mathcal{C}_0^{n-1+\varepsilon}(X)$, ⁸ then the integrals converges uniformly on each compact set in X.

⁹ See [6] for the proof. Singular integrals like (3) and (2) are defined as follows

$$\int \frac{\omega}{\Phi^n} = \frac{1}{2} \left(\int \frac{\omega}{(\Phi - i0)^n} + \int \frac{\omega}{(\Phi + i0)^n} \right),$$
$$\int_{\Sigma} \delta^{(n-1)} (\Phi) \omega = (-1)^{n-1} \frac{(n-1)!}{2\pi i} \left(\int \frac{\omega}{(\Phi - i0)^n} - \int \frac{\omega}{(\Phi + i0)^n} \right)$$

¹⁰ for any smooth volume form ω .

3 Reconstructions on smooth manifolds

Theorem 2 Let X be a smooth hypersurface in an affine space E^{n+1} with a volume form $d_g X$. Let Σ be an ellipsoid or a point in E^{n+1} (called katod) such that the condition E is satisfied: any line that meets X at least twice does not touch Σ . Then for any $n \geq 2$, any function $f \in L_2(X)$ with compact support can be recovered from data of integrals $M_{\Phi}f(\sigma)$ generated by function

$$\Phi(x,\sigma) = \langle x - \sigma, \nabla q(\sigma) \rangle.$$

¹ The reconstruction is given in the form (2) for odd n and in the form (3) for

² even n where $d\Sigma = dV/dq$, dV is the invariant volume form in E^{n+1} and q is

the second order polynomial such that $q(\sigma) = 1$ on Σ . The integrals converge in the sense of Theorem 2.

The hyperplanes tangent to Σ are shown in Fig.1 by light red. The set

$$Z(\sigma) = \{x \in X : \Phi(x, \sigma) = 0\}$$

 $_5$ is the intersection of X with the hyperplane tangent to the katod at the point $_6$ σ :

Remark 1. Theorem 2 was obtained in [6] for the case $X \subset S^n$ and the katod is a sphere or a point inside S^n . A reconstruction for the case of onepoint katod was also done by Salmon [7] (n = 2), [8] (arbitrary n) by a different method.

Remark 2. The generating function $\langle x - \sigma, \nabla q(\sigma) \rangle$ of this geometry does not depend on a specific affine coordinate system on E^{n+1} . Therefore we may assume that the katod is a sphere. The ellipsoid can be replaced by an arbitrary hyperboloid H in E^{n+1} ; the volume form dV is to be replaced by the form $T^*(dV)$ where T is the projective transform such that T(H) is an ellipsoid.

Remark 3. If X is a hyperplane and the katod is a point in E^{n+1} or at infinity Theorem 2 is equivalent to the classical Radon's inversion theorem [2]. In this case I is fulfilled if we take each hyperplane through the katod point two times with the opposite conormal vectors. The hyperbolic space of constant curvature can be realized as the hyperboloid

$$\mathbf{H} = \left\{ (x_0, x) \in E^{n+1} : x_0^2 = |x|^2 + 1, \ x_0 > 0 \right\}$$

with the metric induced from the euclidean metric of E^{n+1} . Any totally geodesic 3 hypersurface is the intersection of H with a subspace P in E^{n+1} of dimension 4 n. The inversion of the totally geodesic transform for functions on H was obtained by Helgason 1959-1961 (even n) [4] and Semyanistiv in 1960-1961 (odd n [3]. The alternative approach was applied by Gelfand and Graev [5]. In 7 the case $X = H, \Sigma = \{0\}$ Theorem 2 gives Semyanistyi's reconstruction and Helgason's inversion in the equivalent form. Theorem 2 applied to any elliptic q katod $\Sigma \subset \{x_0 < |x|^2 + 1\}$ provides inversions for the family of non-equivalent non-geodesic integral transforms on any open subset $X \subset H$ that fulfils **E**. If 11 $\Sigma \subset \left\{ x_0 \leq -|x|^2 \right\}$ the inversion holds for X = H. These reconstructions were 12 not previously known. 13

14 **4 Proof**

The function $\Phi(x, \sigma) = \langle x - \sigma, \nabla q(\sigma) \rangle$ generates the family of hyperplane sections $Z(\sigma) = \{x \in X : \Phi(x, \sigma) = 0\}$ with hyperplanes tangent to Σ . Now we receive that Φ satisfies conditions **I**, **II**, **III** as in Sect. 2.

18 Lemma 3 Φ fulfils I.

Proof. We have $d_x \Phi \neq 0$ on Z since of **I**. For any point $x \in X$ and any covector $v \in T_x^*(X)$, $v \neq 0$, there exists one and only one hyperplane $Z(\sigma)$ such that $x \in Z(\sigma)$ and $v = td_x \Phi(x, \sigma)$ on $T_x^*(X)$ for some t > 0. It follows that the map D_{Φ} is bijective. We prove that D_{Φ} is a local diffeomorphism. This condition can be written in the form

$$\det J_{\xi,\tau}(x,\sigma) \neq 0, \ (x,\sigma) \in Z,$$
(5)

where

$$J_{\xi,\tau} = \left(\begin{array}{cc} 0 & \nabla_{\tau} \Phi \\ {}^t \nabla_{\xi} \Phi & \nabla_{\xi} \nabla_{\tau} \Phi \end{array}\right)$$

is a $n + 1 \times n + 1$ matrix and ξ, τ are arbitrary local systems of coordinates on X and Σ , respectively. We have

$$J_{\xi,\tau} = \begin{pmatrix} 0 & \left\langle (x-\sigma) \times \frac{\partial \sigma}{\partial \tau}, \nabla^2 q\left(\sigma\right) \right\rangle \\ \left\langle \frac{\partial x}{\partial \xi}, \nabla q \right\rangle & \left\langle \frac{\partial x}{\partial \xi} \times \frac{\partial \sigma}{\partial \tau}, \nabla^2 q\left(\sigma\right) \right\rangle \end{pmatrix},$$

where $\langle \partial \sigma / \partial \tau, \nabla q(\sigma) \rangle = \partial q(\sigma) / \partial \tau = 0$ since q is constant on Σ . If $T = (t_0, t^1, ..., t^n)$ is a vector such that TJ = 0 then

$$\left\langle t^i \frac{\partial x_i}{\partial \xi}, \nabla q \right\rangle = 0,$$
 (6)

$$\left\langle \left(t^{i} \frac{\partial x_{i}}{\partial \xi} + t_{0} \left(x - \sigma \right) \right) \times \frac{\partial \sigma}{\partial \tau_{j}}, \nabla^{2} q \left(\sigma \right) \right\rangle = 0, \ j = 1, ..., n$$

$$(7)$$

where summation over *i* is assumed. Vector $t^i \partial x_i / \partial \xi$ is tangent to X and (6) means that it is tangent to Σ at σ . Vector $x - \sigma$ is also tangent to Σ since of $\Phi(x, \sigma) = 0$. Therefore there exist constants $c_1, ..., c_n$ such that

$$\theta \doteqdot c_j \frac{\partial \sigma}{\partial \tau_j} = t_i \frac{\partial x_i}{\partial \xi} + t_0 \left(x - \sigma \right)$$

Taking the linear combination of equations (7) with coefficients $c_i c_j$ we get

 $\left\langle \boldsymbol{\theta} \times \boldsymbol{\theta}, \nabla^2 q\left(\boldsymbol{\sigma}\right) \right\rangle = 0$

which implies $\theta = 0$ since the form $\nabla^2 q$ is strictly positive. This yields $t^i \partial x_i / \partial \xi + t_0 (x - \sigma) = 0$ where the first term is tangent to X and the second one is transversal to X. It follows that $t^1 = \ldots = t^n = 0$, $t_0 = 0$ and T = 0 which completes the proof of (5) and of the Lemma.

⁶ Condition **II**. Check that generating function Φ coincides with

$$\tilde{\Phi}(x,\sigma) = \langle x - e, \nabla q(\sigma) \rangle - r, \ r = 2 - 2q(e).$$
(8)

7 This follows from

$$\tilde{\Phi}(x,\sigma) - \Phi(x,\sigma) = \langle \sigma - e, \nabla q(\sigma) \rangle - r = 2(q(\sigma) - q(e)) - r = 0$$
(9)

since $q(\sigma) - q(e)$ is a quadratic form of $\sigma - e, \sigma \in \Sigma$. Suppose that **II** violates for $\tilde{\Phi}$ and some points $x, y \in X$. We have then $a \langle x - e, \nabla^2 q(\sigma) \rangle = b \langle y - e, \nabla^2 q(\sigma) \rangle$ for a vector $(a, b) \neq (0, 0)$ and a point $\sigma \in \Sigma$. This implies that a(x - e) = b(y - e) since the matrix $\nabla^2 q$ is nonsingular. It follows that x, y, and e belong to one line. This line crosses the ellipsoid which is impossible since of **E**.

¹⁴ Lemma 4 Function Φ fulfils III.

¹⁵ **Proof.** We are going to show that integral

$$Q_{n}(x,y) = \operatorname{Re} i^{n} \int_{Z(y)} \left(\Phi(x,\sigma) - i0 \right)^{-n} dZ(y),$$
$$dZ(y) \doteq \frac{d\Sigma}{d\langle y - \sigma, \nabla q(\sigma) \rangle}$$

vanishes for all $x, y \in X, y \neq x$. We have

$$\Phi(x,\sigma) = \Phi(x,\sigma) - \Phi(y,\sigma) = \langle x - y, \nabla q(\sigma) \rangle$$

on Z(y). The right hand side does not change its sign if and only if the point x is contained in the convex closed cone bounded by the lines through points y that are tangent to Z(y). It is not the case since of **E**. Therefore $\Phi(x, \sigma)$ does change its sign on Z(y). By (9)

$$\langle y - e, d\nabla q(\sigma) \rangle - d_{\sigma} \langle y - \sigma, \nabla q(\sigma) \rangle = d(\sigma - e, \nabla q(\sigma)) = d(q(\sigma) - q(e)) = 0$$

on Σ since $q(\sigma) = 1$. Therefore

$$dZ(y) = \frac{dV}{dq \wedge \langle y - e, d\nabla q(\sigma) \rangle}$$

The reconstruction formulas to be proved are invariant with respect to affine transformations. Therefore we can introduce affine coordinates $\xi_0, ..., \xi_n$ in E^{n+1} such that $q(\sigma) = |\xi|^2/2$. We have then $dV = Cd\xi_0 \wedge ... \wedge d\xi_n$ for some constant C. This yields $dq = \sum \xi_i d\xi_i$ and $\langle y - e, d\nabla q(\sigma) \rangle = \langle s, d\xi \rangle$ for some vector $s \in E^{n+1}$. It follows that

$$dZ(y) = \frac{dV}{\xi d\xi \wedge \langle s, d\xi \rangle} = C \frac{\Omega_n}{\langle s, d\xi \rangle} = C' \Omega_{n-1}$$

for a constant C' where Ω_k denotes the volume form of the euclidean k-sphere S^k . Finally we apply [6] Theorem A.20 to Φ and to the sphere $Z(y) \cong S^{n-1}$. This implies $Q_n(x, y) = 0$ which proves the Lemma. \blacktriangleright

Application of Theorem 1 completes the proof of Theorem 2 for any elliptic katod. In the case of one-point katod $\{e\}$ one can take the generating function $\tilde{\Phi}(x,\sigma) = \langle x - e, \sigma \rangle, \ \sigma \in \mathbf{S}^n$ and follow the above arguments.

5 Spheres instead of hyperplanes

7 An analog of Theorem 2 for spheres reads

Theorem 5 Let X be a smooth manifold of dimension n embedded in the unit ball $B \setminus \{0\}$ in an Euclidean space E^{n+1} and $\Sigma \doteq \partial B$ is the katod. Suppose that there are no four points $\{0\}, x_1, x_2, \sigma$ on one circle where $x_1, x_2 \in X, \sigma \in \Sigma$. The function $\Psi(x, \sigma) = \langle x, \sigma \rangle - |x|^2$ generates the integral transform

$$M_{\Psi}f(\sigma) = \int_{Z(\sigma)} f(x) \frac{\mathrm{d}X}{\langle \mathrm{d}x, \sigma - 2x \rangle}, \ \sigma \in \Sigma$$

where for any σ , $Z(\sigma) = \left\{ x : \langle x, \sigma \rangle = |x|^2 \right\}$ is a sphere in B tangent to Σ and containing the origin. This transform can be inverted by (2) for odd n and by (3) for even n.

Proof. The inversion map $I: x \mapsto x(y) = y/|y|^2$ is identical on Σ and we have

$$\Psi(x(y),\sigma) = |y|^{-2} \left(\langle y,\sigma \rangle - 1\right) = |y|^{-2} \tilde{\Phi}(y,\sigma)$$

where $\tilde{\Phi}$ is defined in (8) for the katod $\Sigma = S^n$. The function Ψ fulfills **I**,**II**,**III**

since so does $\tilde{\Phi}$ and the factor $|y|^{-2}$ does not vanish on X. Finally we apply Theorem 1 to Ψ .

14 **References**

- [1] P. FUNK. Über Flächen mit lauter geschlossenen geodätischen Linien, Math.
 Annal., 74 (1913), 278–300.
- J. RADON. Über die Bestimmung von Funktionen durch ihre Integralwerte
 längs gewisser Mannigfaltigkeiten Berichte Sächsische Akademie der Wissenschaften, Math-Phys Kl., 69 (1917), 262-267.
- [3] V. SEMYANISTY. Homogeneous functions and some problems of integral
 geometry in spaces of constant curvature. *Soviet Math. Dokl.*, 2 (1961),
 59-62.
- [4] S. HELGASON. Integral geometry and Radon transforms. Springer-Verlag,
 Berlin (2011).
- [5] I. GELFAND, M. GRAEV AND N. VILENKIN. Generalized functions V.5,
 Integral geometry and representation theory. Academic Press, New York
 (1966).
- ¹⁴ [6] V. PALAMODOV. Reconstruction from data of integrals CRC (2016).
- [7] Y. SALMAN. An inversion formula for the spherical transform in S² for a special family of circles of integration. Anal. Math. Phys., 6 (2016), 43–58.
- [8] Y. SALMAN. Recovering functions defined on the unit sphere by integration
 on a special family of sub-spheres. Anal. Math. Phys., 7 (2017), 165–185.
- [9] V. PALAMODOV. Reconstruction from cone integral transforms. *Inverse Probl.*, 33 (2017), 104001.