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Abstract The known integral transforms of Funk-Radon type are applied5

to manifolds which have algebraic structure (planes, spheres, ellipsoids, hyper-6

boloids, paraboloids etc.). A variety of new exact reconstructions is described7

in this paper for the integral transforms on arbitrary smooth manifolds Xn
8

embedded in an a¢ ne space En+1 with an additional structure.9
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1 Introduction11

Any even function de�ned on 2-sphere is reconstructed from its integrals over big12

circles by means of the classical Minkowski-Funk formula [1]. It was generalized13

by Helgason [4] and Semyanistiy [3] for the geodesic transform on spheres of14

arbitrary dimension. For the non-geodesic Funk transform, there are inversion15

formulas similar to that for the Funk transform. These formulas [6] and used16

in [9] for inversion of the singular cone integral transform. Here we obtain17

generalizations for arbitrary open smooth hypersurfaces X in an a¢ ne space. A18

function f de�ned on X is integrated over intersections of X with hyperplanes19

tangent to an ellipsoid � (called katod). The exact reconstruction of the function20

is possible if there are no collinear points x; y; � such that x; y 2 suppf; � 221

�: Note that no reconstruction is known so far for functions on non-analytic22

submanifolds X of an a¢ ne space.23

2 Preliminaries24

Let X and � be manifolds of dimension n > 1 and � be a real smooth function25

de�ned on X � � such that d� (x; �) 6= 0 as � (x; �) = 0: The (generalized)26

Funk-Radon transform M� generated by � is de�ned by27

M�f (�) = lim
"!0

1

2"

Z
j�j�"

fdX =

Z
Z(x)

f (x)
dgX

d�
; � 2 � (1)

where dgX is a volume form on X of a Riemannian metric g and Z (x) =
f� : � (x; �) = 0g : Condition I: D� : Z ! S� (X) is a di¤eomorphism, where
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Z = f(x; �) : � (x; �) = 0g ; S� (X) is the bundle of unit cotangent vectors on
X and

D(x; �) = kdx�k�1g dx� (x; �) :

where ktkg means the g norm of a covector t at a point x 2 X: This implies that
for any x 2 X; the set Z (x) = f� : � (x; �) = 0g is di¤eomorphic to the sphere
Sn�1: Points x; y 2 X; x 6= y are called conjugate if � (x; �) = � (y; �) = 0 and
d�� (x; �) k d�� (y; �) for some � 2 �: Condition II: there are no conjugate
points. For any smooth volume form d� on �; the integral

Qn (x; y) =

Z
Z(y)

(� (x; �)� i0)�n d�

d�� (y; �)
; Z (y) = f� : � (y; �) = 0g

is well de�ned for any x; y 2 X; y 6= x since of conditions I and II.1

Theorem 1 Let � be a smooth function on X�� satisfying I, II and condition
III:

Re inQn (x; y) = 0 for all x; y 2 X; x 6= y:

An arbitrary function f 2 L2 (X) with compact support can be reconstructed2

from the Funk-Radon transform by3

f (x) =
1

2jn�1Dn (x)

Z
�

�(n�1) (� (x; �))M�f (�) d� (2)

for any odd n; and by4

f (x) =
(n� 1)!
jnDn (x)

Z
�

M�f (�) d�

� (x; �)
n (3)

for even n; where for any n5

Dn (x) =
1

jSn�1j

Z
Z(x)

kdx� (x; �)k�ng
d�

d�� (x; �)
: (4)

In both cases M�f 2 W (n�1)=2
2 (�) and integrals (2), (3) converge in quadratic6

mean on any compact set in X: If f 2 Cn�10 (X), respectively f 2 Cn�1+"0 (X) ;7

then the integrals converges uniformly on each compact set in X:8

See [6] for the proof. Singular integrals like (3) and (2) are de�ned as follows9 Z
!

�n
=

1

2

�Z
!

(�� i0)n +
Z

!

(� + i0)
n

�
;Z

�

�(n�1) (�)! = (�1)n�1 (n� 1)!
2�i

�Z
!

(�� i0)n �
Z

!

(� + i0)
n

�
for any smooth volume form !:10
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3 Reconstructions on smooth manifolds11

Theorem 2 Let X be a smooth hypersurface in an a¢ ne space En+1 with a
volume form dgX: Let � be an ellipsoid or a point in En+1 (called katod) such
that the condition E is satis�ed: any line that meets X at least twice does not
touch �: Then for any n � 2; any function f 2 L2 (X) with compact support
can be recovered from data of integrals M�f (�) generated by function

� (x; �) = hx� �;rq (�)i :

The reconstruction is given in the form (2) for odd n and in the form (3) for1

even n where d� = dV=dq; dV is the invariant volume form in En+1 and q is2

the second order polynomial such that q (�) = 1 on �. The integrals converge3

in the sense of Theorem 2.4

The hyperplanes tangent to � are shown in Fig.1 by light red. The set

Z (�) = fx 2 X : � (x; �) = 0g

is the intersection of X with the hyperplane tangent to the katod at the point5

� :6

X

katod

7

Fig. 1 Geometry of the generalized Funk-Radon transform8

Remark 1. Theorem 2 was obtained in [6] for the case X � Sn and the9

katod is a sphere or a point inside Sn. A reconstruction for the case of one-10

point katod was also done by Salmon [7] (n = 2), [8] (arbitrary n) by a di¤erent11

method.12

Remark 2. The generating function hx� �;rq (�)i of this geometry does13

not depend on a speci�c a¢ ne coordinate system on En+1. Therefore we may14
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assume that the katod is a sphere. The ellipsoid can be replaced by an arbitrary15

hyperboloid H in En+1; the volume form dV is to be replaced by the form1

T � (dV ) where T is the projective transform such that T (H) is an ellipsoid.2

Remark 3. If X is a hyperplane and the katod is a point in En+1 or at
in�nity Theorem 2 is equivalent to the classical Radon�s inversion theorem [2].
In this case I is ful�lled if we take each hyperplane through the katod point two
times with the opposite conormal vectors. The hyperbolic space of constant
curvature can be realized as the hyperboloid

H =
n
(x0; x) 2 En+1 : x20 = jxj

2
+ 1; x0 > 0

o
with the metric induced from the euclidean metric of En+1: Any totally geodesic3

hypersurface is the intersection of H with a subspace P in En+1 of dimension4

n: The inversion of the totally geodesic transform for functions on H was ob-5

tained by Helgason 1959-1961 (even n) [4] and Semyanistiy in 1960-1961 (odd6

n) [3]. The alternative approach was applied by Gelfand and Graev [5]. In7

the case X = H; � = f0g Theorem 2 gives Semyanistyi�s reconstruction and8

Helgason�s inversion in the equivalent form. Theorem 2 applied to any elliptic9

katod � �
n
x0 < jxj2 + 1

o
provides inversions for the family of non-equivalent10

non-geodesic integral transforms on any open subset X � H that ful�ls E. If11

� �
n
x0 � � jxj2

o
the inversion holds for X = H: These reconstructions were12

not previously known.13

4 Proof14

The function � (x; �) = hx� �;rq (�)i generates the family of hyperplane sec-15

tions Z (�) = fx 2 X : � (x; �) = 0g with hyperplanes tangent to �: Now we16

check that � satis�es conditions I, II, III as in Sect. 2.17

Lemma 3 � ful�ls I.18

Proof. We have dx� 6= 0 on Z since of I. For any point x 2 X and any19

covector v 2 T �x (X) ; v 6= 0; there exists one and only one hyperplane Z (�)20

such that x 2 Z (�) and v = tdx� (x; �) on T �x (X) for some t > 0. It follows21

that the map D� is bijective. We prove that D� is a local di¤eomorphism. This22

condition can be written in the form23

det J�;� (x; �) 6= 0; (x; �) 2 Z; (5)

where

J�;� =

�
0 r��

tr�� r�r��

�
is a n+ 1� n+ 1 matrix and �; � are arbitrary local systems of coordinates on
X and �; respectively. We have

J�;� =

 
0



(x� �)� @�

@� ;r
2q (�)

�D
@x
@� ;rq

E D
@x
@� �

@�
@� ;r

2q (�)
E !

;
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where h@�=@�;rq (�)i = @q (�) =@� = 0 since q is constant on �: If T =24 �
t0; t

1; :::; tn
�
is a vector such that TJ = 0 then1 �

ti
@xi
@�
;rq

�
= 0; (6)��

ti
@xi
@�

+ t0 (x� �)
�
� @�

@� j
;r2q (�)

�
= 0; j = 1; :::; n (7)

where summation over i is assumed. Vector ti@xi=@� is tangent to X and (6)
means that it is tangent to � at �: Vector x � � is also tangent to � since of
� (x; �) = 0: Therefore there exist constants c1; ::; cn such that

� + cj
@�

@� j
= ti

@xi
@�

+ t0 (x� �) :

Taking the linear combination of equations (7) with coe¢ cients cicj we get

� � �;r2q (�)

�
= 0

which implies � = 0 since the formr2q is strictly positive. This yields ti@xi=@�+2

t0 (x� �) = 0 where the �rst term is tangent to X and the second one is3

transversal to X: It follows that t1 = ::: = tn = 0, t0 = 0 and T = 0 which4

completes the proof of (5) and of the Lemma. I5

Condition II. Check that generating function � coincides with6

~� (x; �) = hx� e;rq (�)i � r; r = 2� 2q (e) : (8)

This follows from7

~� (x; �)� � (x; �) = h� � e;rq (�)i � r = 2 (q (�)� q (e))� r = 0 (9)

since q (�) � q (e) is a quadratic form of � � e; � 2 �. Suppose that II vi-8

olates for ~� and some points x; y 2 X: We have then a


x� e;r2q (�)

�
=9

b


y � e;r2q (�)

�
for a vector (a; b) 6= (0; 0) and a point � 2 �: This implies10

that a (x� e) = b (y � e) since the matrix r2q is nonsingular. It follows that11

x; y; and e belong to one line. This line crosses the ellipsoid which is impossible12

since of E.13

Lemma 4 Function � ful�ls III.14

Proof. We are going to show that integral15

Qn (x; y) = Re in
Z
Z(y)

(� (x; �)� i0)�n dZ (y) ;

dZ (y) + d�

d hy � �;rq (�)i

vanishes for all x; y 2 X; y 6= x: We have

� (x; �) = � (x; �)� � (y; �) = hx� y;rq (�)i
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on Z (y) : The right hand side does not change its sign if and only if the point
x is contained in the convex closed cone bounded by the lines through points y
that are tangent to Z (y) : It is not the case since of E. Therefore � (x; �) does
change its sign on Z (y) : By (9)

hy � e;drq (�)i � d� hy � �;rq (�)i = d (� � e;rq (�)) = d (q (�)� q (e)) = 0
on � since q (�) = 1: Therefore

dZ (y) =
dV

dq ^ hy � e;drq (�)i :

The reconstruction formulas to be proved are invariant with respect to a¢ ne
transformations. Therefore we can introduce a¢ ne coordinates �0; :::; �n in E

n+1

such that q (�) = j�j2 =2 .We have then dV = Cd�0^ :::^d�n for some constant
C: This yields dq =

P
�id�iand hy � e;drq (�)i = hs;d�i for some vector s 2

En+1. It follows that

dZ (y) =
dV

�d� ^ hs;d�i = C

n
hs;d�i = C

0
n�1

for a constant C 0 where 
k denotes the volume form of the euclidean k-sphere16

Sk. Finally we apply [6] Theorem A.20 to � and to the sphere Z (y) �= Sn�1:1

This implies Qn (x; y) = 0 which proves the Lemma. I2

Application of Theorem 1 completes the proof of Theorem 2 for any elliptic3

katod. In the case of one-point katod feg one can take the generating function4

~� (x; �) = hx� e; �i ; � 2 Sn and follow the above arguments.5

5 Spheres instead of hyperplanes6

An analog of Theorem 2 for spheres reads7

Theorem 5 Let X be a smooth manifold of dimension n embedded in the unit
ball Bn f0g in an Euclidean space En+1 and � + @B is the katod. Suppose that
there are no four points f0g ; x1; x2; � on one circle where x1; x2 2 X; � 2 �:
The function 	(x; �) = hx; �i � jxj2 generates the integral transform

M	f (�) =

Z
Z(�)

f (x)
dX

hdx; � � 2xi ; � 2 �

where for any �; Z (�) =
n
x : hx; �i = jxj2

o
is a sphere in B tangent to � and8

containing the origin. This transform can be inverted by (2) for odd n and by9

(3) for even n:10

Proof. The inversion map I : x 7! x (y) = y= jyj2 is identical on � and we
have

	(x (y) ; �) = jyj�2 (hy; �i � 1) = jyj�2 ~� (y; �)
where ~� is de�ned in (8) for the katod � = Sn: The function 	 ful�ls I,II,III11

since so does ~� and the factor jyj�2 does not vanish on X: Finally we apply12

Theorem 1 to 	: I13
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