Reconstructions from integrals over non-analytic
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Abstract The known integral transforms of Funk-Radon type are applied
to manifolds which have algebraic structure (planes, spheres, ellipsoids, hyper-
boloids, paraboloids etc.). A variety of new exact reconstructions is described
in this paper for the integral transforms on arbitrary smooth manifolds X"
embedded in an affine space E"*! with an additional structure.
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1 Introduction

Any even function defined on 2-sphere is reconstructed from its integrals over big
circles by means of the classical Minkowski-Funk formula [1]. It was generalized
by Helgason [4] and Semyanistiy [3] for the geodesic transform on spheres of
arbitrary dimension. For the non-geodesic Funk transform, there are inversion
formulas similar to that for the Funk transform. These formulas [6] and used
in [9] for inversion of the singular cone integral transform. Here we obtain
generalizations for arbitrary open smooth hypersurfaces X in an affine space. A
function f defined on X is integrated over intersections of X with hyperplanes
tangent to an ellipsoid ¥ (called katod). The exact reconstruction of the function
is possible if there are no collinear points x,y, o such that x,y € suppf, o €
3. Note that no reconstruction is known so far for functions on non-analytic
submanifolds X of an affine space.

2 Preliminaries

Let X and X be manifolds of dimension n > 1 and ® be a real smooth function
defined on X x ¥ such that d® (z,0) # 0 as ® (z,0) = 0. The (generalized)
Funk-Radon transform Mg generated by @ is defined by

dg X

. 1
Maf (o) = lim o /l@lggfdxz PRICESELE (1)

where dg X is a volume form on X of a Riemannian metric g and Z (z) =
{o:®(z,0) =0}. Condition I: Dg : Z — S*(X) is a diffecomorphism, where



Z ={(z,0) : ®(z,0) =0}, S*(X) is the bundle of unit cotangent vectors on
X and
D (z,0) = |d,®, " d.® (z,0).

where |[|Z]|, means the g norm of a covector ¢ at a point € X. This implies that
for any x € X, the set Z (z) = {0 : ® (z,0) = 0} is diffeomorphic to the sphere
S"~1. Points x,y € X, x # y are called conjugate if ® (z,0) = ® (y,0) =0 and
do® (z,0) || do® (y,0) for some o € . Condition II: there are no conjugate
points. For any smooth volume form d¥ on 3, the integral

dX

nmv Z(y)={o:®(y,0) =0}

Qu (2.9) —/Z( (@@ i)

is well defined for any x,y € X, y # x since of conditions I and II.

Theorem 1 Let ® be a smooth function on X x X satisfying I, IT and condition
IIT:
Rei"Qn (x,y) =0 for allx,y € X, x #y.

An arbitrary function f € Lo (X) with compact support can be reconstructed
from the Funk-Radon transform by

£@) = gy [0 (@ @.0) Maf ()43 )
for any odd n, and by
_ (n=1)! [ Mgf(0)dS
T =50, ) s e o ©

for even n, where for any n

1 _ dx
D = — P i 4
o0 = e [ 1@l e 0

In both cases Ma f € Wénil)/z (X) and integrals (2), (3) converge in quadratic
mean on any compact set in X. If f € CSL_l (X), respectively f € C6L_1+E (X),
then the integrals converges uniformly on each compact set in X.

See [6] for the proof. Singular integrals like (3) and (2) are defined as follows

v = 3@ [ weor):

/Zé(n_l) @ = ()" (nQ;il)! (/ (@ —wz'())” _/(<I> fm)”)

for any smooth volume form w.
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3 Reconstructions on smooth manifolds

Theorem 2 Let X be a smooth hypersurface in an affine space E™t! with a
volume form dgX. Let X be an ellipsoid or a point in E"T' (called katod) such
that the condition E is satisfied: any line that meets X at least twice does not
touch ¥.. Then for any n > 2, any function f € Lo (X) with compact support
can be recovered from data of integrals Mo f (o) generated by function

O (z,0)=(x—0,Vq(0)).

The reconstruction is given in the form (2) for odd n and in the form (3) for
even n where d¥ = dV/dq, dV is the invariant volume form in E"*! and q is
the second order polynomial such that q(c) = 1 on X. The integrals converge
in the sense of Theorem 2.

The hyperplanes tangent to ¥ are shown in Fig.1 by light red. The set
Z(o)={ze X :®(xz,0) =0}

is the intersection of X with the hyperplane tangent to the katod at the point
o:

katod

N/
g

Fig. 1 Geometry of the generalized Funk-Radon transform

Remark 1. Theorem 2 was obtained in [6] for the case X C S™ and the
katod is a sphere or a point inside S™. A reconstruction for the case of one-
point katod was also done by Salmon [7] (n = 2), [8] (arbitrary n) by a different
method.

Remark 2. The generating function (x — o, Vq (o)) of this geometry does
not depend on a specific affine coordinate system on E"*!. Therefore we may



assume that the katod is a sphere. The ellipsoid can be replaced by an arbitrary
hyperboloid H in E"*!; the volume form dV is to be replaced by the form
T* (dV') where T is the projective transform such that T (H) is an ellipsoid.

Remark 3. If X is a hyperplane and the katod is a point in E"*! or at
infinity Theorem 2 is equivalent to the classical Radon’s inversion theorem [2].
In this case I is fulfilled if we take each hyperplane through the katod point two
times with the opposite conormal vectors. The hyperbolic space of constant
curvature can be realized as the hyperboloid

H— {(xo,x) e B g = o 4+ 1, 2 > 0}

with the metric induced from the euclidean metric of E"*1. Any totally geodesic
hypersurface is the intersection of H with a subspace P in E"*! of dimension
n. The inversion of the totally geodesic transform for functions on H was ob-
tained by Helgason 1959-1961 (even n) [4] and Semyanistiy in 1960-1961 (odd
n) [3]. The alternative approach was applied by Gelfand and Graev [5]. In
the case X = H, ¥ = {0} Theorem 2 gives Semyanistyi’s reconstruction and
Helgason’s inversion in the equivalent form. Theorem 2 applied to any elliptic

katod ¥ C {xo < |a:|2 + 1} provides inversions for the family of non-equivalent
non-geodesic integral transforms on any open subset X C H that fulfils E. If
¥ C {xo < - |x|2} the inversion holds for X = H. These reconstructions were

not previously known.

4 Proof

The function ® (z,0) = (z — 0,V (o)) generates the family of hyperplane sec-
tions Z (0) = {x € X : & (z,0) = 0} with hyperplanes tangent to X. Now we
check that ® satisfies conditions I, I, IIT as in Sect. 2.

Lemma 3 @ fulfils I.

Proof. We have d,® # 0 on Z since of I. For any point z € X and any
covector v € T (X), v # 0, there exists one and only one hyperplane Z (o)
such that z € Z (0) and v = td,® (z,0) on Ty (X) for some t > 0. It follows
that the map Dg is bijective. We prove that Dg is a local diffeomorphism. This
condition can be written in the form

det Je - (x,0) # 0, (z,0) € Z, (5)

where
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isan+1xn+ 1 matrix and &, 7 are arbitrary local systems of coordinates on
X and ¥, respectively. We have

0 {(x — o) x 92,V?q(0))
o= () e )
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where (0o /07,Vq (o)) = 0q(0) /0T = 0 since ¢ is constant on X. If T =
(to, th .., t”) is a vector such that T'J = 0 then

O,
<tzgf§,w> _ (6)

<<tiaa? Fto(z — a)) X 57(27v2q(a)>

where summation over i is assumed. Vector t'0z;/0¢ is tangent to X and (6)
means that it is tangent to X at o. Vector x — o is also tangent to X since of
® (x,0) = 0. Therefore there exist constants cy, .., ¢, such that

Oo ox;
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Taking the linear combination of equations (7) with coefficients c;c; we get
(0 x 0,V%q (o)) =0

which implies § = 0 since the form V?¢ is strictly positive. This yields t*dx; /OE+
to(x — o) = 0 where the first term is tangent to X and the second one is
transversal to X. It follows that t' = ... = t" = 0, tg = 0 and T = 0 which
completes the proof of (5) and of the Lemma. »

Condition II. Check that generating function ® coincides with

®(2,0) = (x—e,Vq(o)) =1, r=2-2q(c). (®)

This follows from

®(2,0) = @ (z,0) = (0 —¢,Vq(0)) =7 =2(q(0) —q(e)) —r =0 (9)

since ¢ (o) — ¢ (e) is a quadratic form of ¢ — e, ¢ € 3. Suppose that IT vi-
olates for ® and some points z,y € X. We have then a<x —e, Vg (cr)> =
b<y —e, Vg (0)> for a vector (a,b) # (0,0) and a point o € X. This implies
that a(z —¢) = b(y — e) since the matrix V?¢ is nonsingular. It follows that
x,1y, and e belong to one line. This line crosses the ellipsoid which is impossible
since of E.

Lemma 4 Function ® fulfils I11.

Proof. We are going to show that integral

Qu(zy) = Rei” /Z @) —i0) " AZ ),

dx
d <y ) VQ (J)>
vanishes for all z,y € X, y # x. We have

dZ (y) =

®(2,0) = @ (z,0) = ®(y,0) = {x =y, Vq(0))



on Z (y). The right hand side does not change its sign if and only if the point
x is contained in the convex closed cone bounded by the lines through points y
that are tangent to Z (y) . It is not the case since of E. Therefore ® (z,0) does
change its sign on Z (y). By (9)

(y—e,dVq(0)) —ds (y —0,Vq(0)) =d (0 — €, Vq(0o)) =d(q(o) —q(e)) =0
on ¥ since ¢q (o) = 1. Therefore

B av
dg A (y —e,dVq (o))

The reconstruction formulas to be proved are invariant with respect to affine
transformations. Therefore we can introduce affine coordinates &, ..., ,, in E"?
such that ¢ (o) = [€]° /2 .We have then dV = Cdé, A... AdE,, for some constant
C. This yields dg = > ¢;d¢,and (y — e,dVq (o)) = (s,d&) for some vector s €
E"TL Tt follows that

dZ (y)

B dVv _c Q,
£dE A (s, d¢) (s, d§)
for a constant C’ where €, denotes the volume form of the euclidean k-sphere
S*. Finally we apply [6] Theorem A.20 to ® and to the sphere Z (y) = S"~L.

This implies @), (z,y) = 0 which proves the Lemma. »
Application of Theorem 1 completes the proof of Theorem 2 for any elliptic
katod. In the case of one-point katod {e} one can take the generating function

®(x,0) = (x —e,0), 0 €S and follow the above arguments.

dz (y) C/Qn— 1

5 Spheres instead of hyperplanes

An analog of Theorem 2 for spheres reads

Theorem 5 Let X be a smooth manifold of dimension n embedded in the unit
ball B\ {0} in an Euclidean space E™*1 and ¥ = OB is the katod. Suppose that
there are no four points {0} ,x1,x2,0 on one circle where x1,z9 € X, o € X.
The function U (z,0) = (z,0) — |z|* generates the integral transform

dX
MWf(U):/Z(a)f(x)M’ oex

where for any o, Z (o) = {x Sz, o) = |m|2} is a sphere in B tangent to ¥ and

containing the origin. This transform can be inverted by (2) for odd n and by

(3) for even n.

Proof. The inversion map I : z — z (y) = y/ |y|2 is identical on ¥ and we
have ~
U(xz(y),0) =y~ ((y,0) = 1) = [y| @ (y,0)
where ® is defined in (8) for the katod ¥ = S”. The function ¥ fulfils T,IT,ITI
since so does ® and the factor |y\72 does not vanish on X. Finally we apply
Theorem 1 to U. »
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