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Abstract A property of extension is studied for solutions of linear elliptic systems
of differential equations. We show that the dimension of the characteristic variety of
the system plays a key role in the problem.
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1 Introduction

According to the famous theorems of Hartogs and Osgood–Brown, any compact sin-
gularity (with no holes) of a holomorphic function of several variables is removable.
This fact can be viewed as a property of solutions of the Cauchy–Riemann system
of differential equations in a domain of the real space R

2m where m > 1. This phe-
nomenon was extended by Ehrenpreis [8], who stated that a compact singularity is
always removable for any system of two equations with constant coefficients and rel-
atively prime symbols. It was shown in [15] that the automatic extension property of
solutions of a general system M of equations with constant coefficients is governed
by the modules Extk(M,D), k = 1,2, . . . . In particular, the equation Ext1(M,D) = 0
guarantees the absence of a compact singularity. Vanishing of higher Ext implies re-
moving of some noncompact singularities, in particular for singularities supported by
a submanifold. Kawai [11] treated a special class of non-elliptic systems with real an-
alytic coefficients. He stated automatic extension of solutions through a submanifold
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of codimension > 1 in the class of hyperfunctions and in the class of real analytic
functions.

The theory of monogenic functions of quaternion variables was of permanent in-
terest as a non-commutative version of the theory of holomorphic functions. The
Hartogs phenomenon for monogenic functions is a special case of the theory [15] and
was addressed in several studies later. It was rediscovered by direct methods by Per-
tici [17], studied in more detail in [2], proved again by Adams, Berenstein, Loustau-
nau, Sabadini, Struppa [1], and once again by W. Wang [18, 19]. The Cauchy–Fueter
complexes and its variations were under study in the pioneering paper of Baston [4]
and later by Colombo, Souček, and Struppa [6] and Bureš, Damiano, and Sabadini [5]
with a focus on the purely algebraic side.

The Hartogs phenomenon is not, however, limited by the theory of differential
equations with constant coefficients. Moreover, this property and its versions depend
rather on the dimension of the support of the corresponding differential module than
on a specific form of its resolution. The objective of this paper is to state the phe-
nomenon of compulsory extension for elliptic systems of linear partial differential
equations in an open set X ⊂ R

n of a general form

P(x, ∂x)u = 0. (1)

Here ∂x
.= (∂/∂x1, . . . , ∂/∂xn), P = {pij } is an arbitrary s × r-matrix differential

operator, u = (u1, . . . , ur ) are unknown functions, and numbers s and r are arbitrary.
We show that if the operator is elliptic in a proper meaning and its coefficients are real
analytic, then the Hartogs phenomenon has place if the dimension d of the character-
istic variety V is strictly less than n − 1 (just as for the case of the Cauchy–Riemann
system with m > 1). An exact statement is: Any solution of (1) defined in X \ Ux(r)

has compulsory extension to X as a solution, where Ux(r) is a ball with a center
x ∈ X, the point x ∈ X is arbitrary, and the radius r = r(x) is a positive continuous
function in X. For smaller d , a stronger statement holds (Theorem 16). In particular,
no closed C1-submanifold S of dimension s can be a support of a non-removable
singularity of a solution if s < n − d − 1. This is not the case for s = n − d − 1.

2 Regularity Conditions for a Differential Matrix

We impose a general condition of regularity on the matrix P which is close to the
form proposed by Malgrange [13]. Fix an arbitrary point x ∈ X, and denote by Ox

the algebra of germs of analytic functions at the point x ∈ R
n and by Dx the algebra

of differential operators in Ox . Let Pi = (pi1, . . . , pir ), i = 1, . . . , s be rows of the
matrix P ; consider a linear combination

Q(x, ∂x) =
s∑

i=1

ai(x, ∂x)Pi(x, ∂x) ∈ Dr
x (2)

with some ai ∈ Dx , where Q = (q1, . . . , qr ). We assume that there exist elements
bi ∈ Dx, i = 1, . . . , s such that

Q(x, ∂x) =
∑

bi(x, ∂x)Pi(x, ∂x) (3)
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and ordbi + ordpij ≤ ordqj for all i = 1, . . . , s, j = 1, . . . , r (orda means the order
of a differential operator a). In other words, there are no cancellations of higher-order
terms in the right-hand side of (3). This condition is not in fact restrictive since it can
always be satisfied if the matrix P is supplemented by several lines of the form (2).

Definition Fix some integers σ1, . . . , σs and ρ1, . . . , ρt (called shifts) such that

degpij ≤ σi − ρj , i = 1, . . . , s; j = 1, . . . , r.

The principal part of the system is the matrix P = {pij }, where pij is the sum of ho-
mogeneous terms of pij of degree σi −ρj (pij = 0 if there are no such terms). Substi-
tuting partial derivatives ∂/∂xi with independent variables ξi , i = 1, . . . , n, we obtain
homogeneous polynomials pij (x, ξ) in ξ = (ξ1, . . . , ξn) with coefficients in Ox . The
next condition is essential:
(*) For any point x ∈ X and polynomials r1, . . . , rs ∈ C[ξ1, . . . , ξn] such that

∑

i

ri (ξ)Pi (x, ξ) = 0,

where Pi (x, ξ) denotes the vector (pi1(x, ξ), . . . ,pir (x, ξ)), there exist functions
R1, . . . ,Rs ∈ Ox[ξ1, . . . , ξn] such that

∑

i

Ri (y, ξ)Pi (y, ξ) = 0

for y in a neighborhood of the point x such that Ri (x, ξ) = ri (ξ), i = 1, . . . , s. This
condition needs to be checked only for a finite number of vectors (r1, . . . , rs) and it is
generic, that is, (*) is always fulfilled in the complement to a nowhere-dense analytic
set [16].

Note that in the case r = s = 1, the condition (*) means only that the principal part
P of P does not vanish at x.

3 Differential Modules and Filtrations

Now we rearrange the above conditions in a more algebraic form. Again let x ∈ R
n

and D be the algebra of differential operators in R
n with coefficients in the algebra

O of germs at x of analytic functions in R
n (here and later we omit the subscript x).

The algebra D has natural filtration {Dk, k = 0,1, . . .}, where Dk is the O-module of
differential operators a ∈ D of order orda ≤ k and D0 = O . The associated graded
module

D = grD = ⊕∞
k=0Dk/Dk−1

is a commutative O-algebra. Fix a coordinate system x1, . . . , xn in R
n. The algebra

D is isomorphic to the graded algebra O[ξ1, . . . , ξn], where the generator ξi is repre-
sented by the operator ∂/∂xi , i = 1, . . . , n. The algebra D ⊗O C is then isomorphic
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to the graded algebra of homogeneous polynomials in T ∗
x (Rn). Fix a natural r and a

vector ρ = (ρ1, . . . , ρr ) ∈ Z
r ; the increasing sequence of O-submodules

D
ρ
k = {

a ∈ Dr,ordρ a ≤ k
}
, k ∈ Z

is called filtration generated by the shift vector ρ, where ordρ a = ordρ(a1, . . . , ar ) =
maxi ordai + ρi . The graded vector space

Dρ = ⊕kD
ρ
k /D

ρ
k−1

is a module over the graded commutative algebra D. Let r, s be natural numbers; any
morphism of left D-modules P : Ds → Dr can be written in the form a 
→ aP , where
an element a = (a1, . . . , as) ∈ Ds is thought of as a row and P as an s × r-matrix
whose entries pij , i = 1, . . . , s, j = 1, . . . , r are elements of D. Let σ denote the
filtration in Ds defined by a shift vector σ = (σ1, . . . , σs). The morphism P agrees
with the filtrations, if ordρ(aP ) ≤ ordσ a for any a ∈ Ds . This condition is equivalent
to the inequalities ordpij ≤ σi − ρj . Let pij be the sum of the terms of pij of order
σi − ρj . The matrix P = {pij } is called the principal part of P with respect to the
filtrations generated by ρ and σ . The operator P is called elliptic at a point x in the
sense of Douglis–Nirenberg [7] if rank P(x, ξ) = s for any real ξ �= 0.

Let M be a left D-module; suppose that M has an increasing filtration by O-
submodules Mk , k ∈ Z, such that ∪Mk = M and Di Mk ⊂ Mk+i for any i and k.
Then we call M a filtered D-module. For a filtered module M , the direct sum

grM = ⊕∞
k=−∞Mk/Mk−1

has a natural structure of D-module.
Let M and N be filtered left (or right) D-modules. We say that a D-morphism

α : M → N agrees with the filtrations, if α(Mk) ⊂ Nk for k = 0,1,2, . . . . If α agrees
with filtrations, it generates a morphism of graded modules grα : grM → grN , and
the correspondence α 
→ grα is a functor.

4 Complexes and Symbols

Let

· · · → Dt Q→ Ds P→ Dr (4)

be an exact sequence of left D-modules. The morphisms P,Q, . . . in (13) act by
right multiplication as above. Suppose that the modules in (4) are supplied with fil-
trations generated by some shift vectors ρ,σ, τ, . . . , and denote these modules by
. . . ,Dτ ,Dσ ,Dρ . We assume that the morphisms . . . ,Q,P agree with these filtra-
tions, which means . . . ,ordqjk ≤ τj − σk,ordpij ≤ σi − ρj for entries of these ma-
trices. The sequence of graded D-modules is then well defined,

· · · → Dτ Q→ Dσ P→ Dρ.
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Taking a tensor product over the algebra O , we get the complex

· · · → Dτ ⊗ C
Q⊗C→ Dσ ⊗ C

P⊗C→ Dρ ⊗ C

of free graded modules over the commutative algebra A = D ⊗ C ∼= C[ξ1, . . . , ξn].
The set of maximal ideals in the algebra A is isomorphic to C

n. For a maximal ideal
m in A we take a tensor product with the quotient algebra. This yields a complex of
C-vector spaces

· · · → (
Dτ ⊗ C

)⊗AA/m
Qm→ (

Dσ ⊗ C
)⊗AA/m

Pm→ (
Dρ ⊗ C

) ⊗A A/m,

where . . . ,Pm = P ⊗ C⊗A/m. Because A/m ∼= C, this complex can be written in a
simple form,

· · · → C
t Q(x,ξ)→ C

s P(x,ξ)→ C
r , (5)

where ξ is the point in C
n corresponding to the ideal m. Here, . . . ,Q(x, ξ),P(x, ξ)

are matrices whose entries are analytic functions of x and polynomial functions of ξ .

Definition We call (5) the principal symbol of (4). The complex (4) is called elliptic
in the sense of Douglis–Nirenberg if the symbol is exact at any real point ξ �= 0.

5 Local Solvability

Let x ∈ R
n, D = Dx , and (4) be an exact sequence of left D-modules. Denote by

E the space of germs at x of C∞-functions defined in R
n. This space has a natural

structure of left D-module. Applying the functor HomD(·,E) to (4) we obtain a
complex of vector spaces:

Er P→ Es Q→ Et → ·· · , (6)

where the matrices P,Q, . . . act by left multiplication as in (1).

Theorem 1 If (4) is exact and elliptic, then the sequence (6) is exact.

The case of arbitrary operator P with constant coefficients is considered in Mal-
grange [12] and in [15]. For the case of analytic coefficients, this statement is es-
sentially due to Malgrange [14] who proved it for Newlander–Nirenberg’s operator
by reduction to the case of germs of analytic functions (the method coming from
the Hodge theory). A proof in the general case was done by Andreotti–Nacinovich
[3] by the same method. For a special case, a quite different method was used by
Hörmander [10].

We state here a quantitative version of this theorem. Let E be the sheaf of germs of
C∞-functions in R

n. The space E(U) = Γ (U,E) for any open U ⊂ R
n has a natural

Fréchet topology. Any s × r matrix P as in (1) defined in X generates for any open
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U ⊂ X a linear continuous operator P : Er(U) → Es(U). We denote its kernel by
EP (U).

Fix a Euclidean structure in R
n; for a point x ∈ R

n and a number r > 0 the notation
Ux(r) means the r-neighborhood of x.

Theorem 2 Let D = DX be the sheaf of germs of analytic differential operators in
an open set X ⊂ R

n and (4) be an elliptic complex of filtered D-modules, then

A. There exists a continuous function ax in X such that for an arbitrary point x ∈ X,
arbitrary 0 < r ≤ 1, and arbitrary g ∈ EQ(Ux(r)) there exists f ∈ Er(Ux(axr))

such that

Pf = g (7)

in Ux(axr).
B. There exists a linear continuous operator sx,r : EQ(Ux(r)) → Er(Ux(axr)) that

provides a solution to (7).

Proof 1. We will construct a Laplace-like operator Ω for (4) and reduce the state-
ment to the case when Ωg = 0. Because the morphisms agree with the filtrations, the
inequalities

ordqij ≤ τi − σj , ordpij ≤ σi − ρj

are fulfilled, where Q = {qij },P = {pij } are the entries of matrices Q and P . For
any differential operator A in X ⊂ R

n with analytic coefficients, the formal adjoint
operator A∗ acts on smooth densities and on distributions with compact support in X:

∫

X

A∗(v)u =
∫

X

vA(u).

Identifying a function u with the density udx, where dx is the Euclidean volume form
in R

n, we make the adjoint operator a∗ acting on functions. It also has analytic coef-
ficients and (AB)∗ = B∗A∗. The Laplace operator 
 in R

n is self-adjoint; we denote
Λ = −
. For a natural k and a vector ω = (ω1, . . . ,ωk) with natural coordinates, we
denote by Λω the diagonal k × k matrix (Λω1, . . . ,Λωk ). Set t = max(τ1, . . . , τt ) and
denote t + ρ = (t + ρ1, . . . , t + ρr), t − τ = · · · . The differential operator

Ω = PΛt+ρP ∗ + Λσ Q∗Λt−τQΛσ

is well defined in the sheaf Es .

Lemma 3 Ω is an elliptic operator in the sense of Douglis–Nirenberg in X with the
shift vector equal to 2t + 2σ = (2t + 2σ1, . . . ,2t + 2σs).

We postpone a proof of this Lemma. Because Ω is elliptic, there exists a countable
family of local fundamental solutions E defined in open sets DE such that X = ∪DE .
Take a fundamental solution E (Lemma 4), an arbitrary point x ∈ DE , and a number
r > 0 such that Ux(r) ⊂ DE . Choose a smooth cut function e with support in Ux(r)



Hartogs Phenomenon for Systems of Differential Equations 673

that is equal to 1 in Ux(r/2). Suppose that a function g ∈ Es(Ux(r)) fulfils Qg = 0,
and set

ge = eg, h = Q∗Λt−τQΛσ Ege, f = Λt+ρP ∗Ege.

We have

Pf = PΛt+ρP ∗Ege = ΩEge − Λσ Q∗Λt−τQΛσ Ege = ge − Λσ h,

and see that the function f is a solution of (7) modulo a function Λσ h. On the other
hand,

Ωh = Λσ Q∗Λt−τQΛσ Q∗Λt−τQΛσ Ege

= Λσ Q∗Λt−τQΩEge = Λσ Q∗Λt−τQg = 0

in Ux(r/2) since P ∗Q∗ = 0 and QP = 0. It follows that the function h is analytic in
Ux(r/2) since Ω is elliptic and has analytic coefficients.

Proof 2. We show that h has holomorphic continuation in a quantified complex
neighborhood Zx of the point x.

Lemma 4 Let A be an m × m matrix differential operator with analytic coefficients
in an open set X ⊂ R

n that is elliptic in the sense of Douglis–Nirenberg. Then there
exist positive continuous functions r = r(q), s = s(q) in X and for any q ∈ X a fun-
damental solution E = E(x,u) defined in Uq(r) × Uq(r) that admits a holomorphic
extension E(z,w) in the domain

Z = {
z = x + ıy,w = u + ıv, s|y − v| ≤ |x − u| < r

}
. (8)

Moreover, φE defines a bounded operator in L2(Uq(r)) → L2(R
n) for any test func-

tion φ with support in Uq(r).

Proof We apply the method of E. Levi. According to the assumption, A defines a
map A : Dm → Dm that agrees with filtrations Dσ and Dρ in Dm generated by some
shift vectors ρ and σ . Let A(x,D) be the principal part of this operator, that is,
A = {aij }, where aij is the homogeneous part of aij of order σi − ρj . The princi-
pal symbol A(x, ξ) is elliptic for any x ∈ X, which implies that the scalar operator
det A(x, ξ) is elliptic. The elliptic operator Aq(∂x) = A(q, ∂x) with constant coeffi-
cients possesses a fundamental solution Eq(x, y) = Eq(x−y) in R

n, and the function
Eq(x) has a holomorphic extension Eq(z) to a neighborhood of R

n\{0} of the form
{z ∈ C

n; | Im z| < sA|Re z|}, where the constant sA is determined from the condition
det Aq(ξ + ıη) �= 0 for |η| < sA|ξ |, where Aq(ζ ) is the symbol of Aq . Such a funda-
mental solution can be written as the Fourier–Laplace integral of A−1

q (ζ ) taken over
an n-cycle in C

n that coincides with R
n up to a compact subset. Choose a number

r such that Uq(2r) ⊂ X and take a test function φ in U that is equal to 1 in Uq(r).
Consider an operator series

E = Eq

∞∑

k=0

Fk, F = φ(A − Aq)Eq, (9)
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where we set F = 0 in R
n\Uq(r). Let eij be the m×m matrix whose entry equals 1 in

the ij -place and 0 otherwise, and let b be a differential operator in R
n with constant

coefficients such that ordb ≤ σi − ρj . The operator beij defines a map Dσ → Dρ

which agrees with filtrations. This yields that the composition beijEq is a bounded
operator in L2(R

n)s . We have

A − Aq =
r∑

i,j=1

βij (x)bij eij ,

where for all i, j , ordbij ≤ σi − ρj and βij (z) are analytic functions that vanish for
x = q . The norm N = ‖φ(A − Aq)Eq‖ can be made smaller than 1/2 if we take r =
r(q) sufficiently small, and the series (9) converges as an operator in L2(Uq(r))m →
L2(Uq(2r))m. Moreover, we have

‖ψE‖ < 2‖ψEq‖ < ∞
for any test function ψ since the kernel Eq has weak singularity. It is easy to check
that AE = id in Uq(r). The kernel E(x,u) is real analytic in Uq(r) × Uq(r) out of
the diagonal since the operator A is elliptic. Moreover, it has a holomorphic extension
to the domain (8) with s(q) = sAq /2 due to Hörmander [9], Theorem 5.3.3.

Lemma 5 For an arbitrary point q ∈ X and arbitrary r ≤ r(q), any solution f of
the equation Af = 0 in the ball Uq(r) has a unique holomorphic extension to the
ball Zq(ρ) ⊂ C

n with the center q and radius ρ = s(q)r , where r(q) and s(q) are
the functions as in the previous lemma.

Proof Choose a test function e supported in Uq(r) that is equal to 1 in Uq(r/2), and
evaluate the solution f in Uq(r/2) by means of the integral

f (x) =
∫

Rn

A∗(u, ∂u)e(u)f (u)E(x,u)du.

We can now move the point x to an arbitrary point z = x + ıy such that |y| < s(q)r/2.
The function E(z,u) is holomorphic, since the support of the integrand is contained
in Uq(r)\Uq(r/2), hence |x − u| > r/2. This gives a holomorphic extension of f to
the ball Zq(s(q)r/2).

Thus the function h as above has holomorphic extension to the ball Zx(bxr),
where bx = s(x)/2. This construction has the property B with any r < dist(x, ∂DE)

and a positive continuous function bx = bE,x ≤ 1 defined in the domain DE . Take
the maximum ax = max{bE,xδE(x), x ∈ DE}, where δE(x)

.= min{dist(x, ∂DE),1}
for x ∈ DE and δE(x) = 0 for x ∈ X\DE , over the family of all fundamental solu-
tions E constructed by means of Lemma 4. The function ax is continuous in X, and
ax ≤ bE,x for any x ∈ X and some E, hence the function ax fulfils A and B.

Proof 3. Now it is sufficient to prove the statements of Theorem 2 for the sheaf H
of germs of analytic functions in R

n. A construction of a solution to (7) in the space
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of germs of analytic functions can be done by the method of [16] that guarantees the
properties A, B in terms of balls Zx(r) in C

n. �

Proof 4. Proof of Lemma 3. We have

ord
(
PΛt+ρP ∗)

ij
≤ max

k

(
ordpik + ordΛt+ρk + ordpjk

)

≤ max
k

(σi − ρk + 2ρk + 2t + σj − ρk) = σi + σj + 2t.

The same inequality holds for the matrix Λσ Q∗Λt−τQΛσ and for Ω . The principal
symbol Ω(z, ξ) of Ω with respect to the shift vector 2t + 2σ is equal to

Ω = PRt+ρP∗ + Rσ Q∗Rt−τ QRσ ,

where Rω means the symbol of the operator Λω. We will check that detΩ(z, ξ) �= 0
as ξ ∈ R

n\{0}. If it is not the case for a point ξ , then there exists a non-zero vector
v ∈ R

s such that Ω(z, ξ)v = 0. Define the coordinate scalar product 〈, 〉 in R
s and

write

0 = 〈
Ω(x, ξ)v, v

〉 = 〈
PRt+ρP∗v, v

〉 + 〈
Rσ Q∗Rt−τ QRσ v, v

〉

= 〈
R(t+ρ)/2P∗v,R(t+ρ)/2P∗v

〉 + 〈
R(t−τ)/2+σ Qv,R(t−τ)/2+σ Qv

〉
,

where Rω/2 means a diagonal matrix with the positive diagonal terms
√

Rωi , i =
1, . . . , k. Both terms in the right-hand side are non-negative, hence vanish. This yields

P∗(x, ξ)v = 0, Q(x, ξ)v = 0. (10)

By Proposition 12, the sequence of symbols (5) is exact at any real point (x, ξ), ξ �= 0.
Therefore, the first equation (10) implies that v = Q∗(x, ξ)w for some vector w ∈ R

t .
By the second equation (10) we find 0 = 〈Q(x, ξ)v,w〉 = 〈v, v〉, that is, v = 0. This
contradicts the assumption and completes the proof. �

Corollary 6 For any x ∈ X and r ≤ 1 there exist linear continuous operators Rr :
Es(Ux(r)) → Er(Ux(a

3
xr)) and Σr : Et(Ux(r)) → Es(Ux(a

3
xr)) such that

(P Rr + ΣrQ)g = g (11)

for any g ∈ Es(Ux(r)).

Proof Write (4) with two more terms,

· · · → Dv S→ Du R→ Dt Q→ Ds P→ Dr

and apply the functor HomD(·,E):

Er P→ Es Q→ Et R→ Eu S→ Ev → ·· · .
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Here P,Q,R,S, . . . are linear operators as in (6). By Theorem 2 applied to these
terms, there exist linear continuous operators

ρr : EQ

(
Ux(r)

) → Er
(
Ux(axr)

)
, σr : ER

(
Ux(r)

) → Es
(
Ux(axr)

)

τr : ES

(
Ux(r)

) → Et
(
Ux(axr)

)

with the properties Pρrf = f , Qσrg = g, Rτrh = h in Ux(axr). We have Q(g −
σrQg) = 0 for any g ∈ Es(Ux(r)). Therefore, we can set Rrg = ρa2r (g − σarQg)

and similarly Σrh = σar(h − τrRh). We now have for any g ∈ Es(Ux(r)),

(P Rr + ΣrQ)g = Pρa2r (g − σarQg) + σar(Qg − τrRQg)

= g − σarQg + σarQg = g

and (11) follows. �

6 Solutions with Compact Support

Let X be an open set in R
n; the topological dual space E∗(X) to E(X) is identi-

fied with the space of distributions in R
n with compact support contained in X. An

arbitrary differential s × r matrix P in U with analytic coefficients defines a contin-
uous operator P : Er(X) → Es(X) and the adjoint operator P ∗ : E∗(X)s → E∗(X)r

which acts by

P ∗φ = ψ, ψ(u) = φ(Pu), φ ∈ E∗(X)s, u ∈ Es(X).

For any complex (4) of left DX-modules defined in an open set X ⊂ R
n and any open

set U ⊂ X, the sequence

· · · → E∗(U)t
Q∗
→ E∗(U)s

P ∗→ E∗(U)r

is a complex of vector spaces.

Theorem 7 If (4) is an elliptic complex in an open set X ⊂ R
n, then for any point

x ∈ X and any r , 0 < r ≤ 1,

C. The kernel of P ∗ : E∗(Ux(cxr))
s → E∗(Ux(cxr))

r is contained in the image of
Q∗ : E∗(Ux(r))

t → E∗(Ux(r))
s .

D. A function α ∈ E∗(Ux(cxr))
r is equal to P ∗β for some β ∈ E∗(Ux(r))

s if and
only if α(u) = 0 for any u ∈ EP (Ux(cxr)), where cx = a3

x and ax is the function as
in Theorem 2.

Proof Dualizing (11), we get

R∗
r P

∗α + Q∗Σ∗
r α = α

for an arbitrary α ∈ E∗(Ux(cr))
s . If αP = 0, this equation yields α = Qβ , where

β = Σ∗
r α ∈ E∗(Ux(r))

r . This proves statement C.



Hartogs Phenomenon for Systems of Differential Equations 677

Check D. If α = P ∗β , then u(α) = Pu(β) = 0. Vice versa, let u(α) = 0 for any
u ∈ EP (Ux(cr)). The distribution β = α − P ∗R∗

r α fulfils v(β) = w(α), where w =
v − RrP v for an arbitrary v ∈ Es(Ux(r)). We have w ∈ Es(Ux(cr)) and Pw = (P −
P RcrP )v = 0 because of (11). Therefore, w(α) = 0; hence, v(β) = 0, which yields
β = 0 and α = P ∗γ , γ = R∗

r α. �

7 Resolutions

Now we take a more invariant point of view on systems like (1).

Definition [13] Let D = Dx for some x ∈ R
n, M be a filtered left D-module, and

grM = ⊕k∈ZMk/Mk−1

the corresponding graded D-module. We assume that

(i) the D-module grM is finitely generated,
(ii) the O-module grM is free.

Definition Let M be a left D-module satisfying (i). The product grM ⊗O C is a
module of finite type over the polynomial algebra A = D ⊗ C ∼= C[ξ1, . . . , ξn]. The
characteristic set of M is by definition the support of V = V (M) in the support of
the A-module grM ⊗O C. The set V is an algebraic cone in the set C

n of maximal
ideals of the algebra A. Any point ξ ∈ V generates a multiplicative functional μ :
grM ⊗O C → C such that μ(am) = a(ξ)μ(m) for arbitrary a ∈ A, m ∈ grM ⊗O C

(and vice versa).

We call M elliptic if the characteristic variety V (M) contains no real point ξ �= 0.

Remark It is easy to check that the condition (ii) for M = CokP : Dσ → Dρ is
equivalent to (*) for P . The characteristic set V of this module coincides with the set
{ξ ∈ C

n; rankP(x, ξ) < s}.

Definition Let α : E → F be a morphism of filtered D-modules. It is called strict if
it agrees with the filtrations and α(Ek) = α(E) ∩ Fk, k ∈ Z.

Proposition 8 Let

E
α→ F

β→ G (12)

be a complex of morphisms of filtered vector spaces. If Ker grβ = Im grα, the com-
plex (12) is exact and α is strict.

Proof Let β(f ) = 0 for an element f ∈ F . We have f ∈ Fk for some k and
grβ(f ) = 0. By the condition there is an element ek ∈ Ek such that grα(ek) = grf ,
that is, f − α(ek) ∈ Fk−1. The element g

.= f − α(e0) is contained in Kerβ ,
we repeat the above arguments with k replaced by k − 1 and obtain an element
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ek−1 ∈ Ek−1 such that f ′ − α(ek−1) ∈ Fk−2 and so on. Finally we get f = α(e),
where α = αk + αk−1 + · · · ∈ Ek . �

Proposition 9 If the complex (12) is exact, α and β are strict, then Ker grβ =
Im grα.

Proof We have grβ grα = 0. Show that Ker grβ ⊂ Im grα. Take an element f ∈ Fk
.=

Fk/Fk−1 such that grβ(f) = 0. Let f ∈ Fk be an element of the class f. We have
β(f ) ∈ Gk−1 and β(f ) ∈ β(Fk−1) since β is strict, that is β(f − g) = 0 for an ele-
ment g ∈ Fk−1. We have f − g = α(e), e ∈ E, since (12) is exact and α(e) = α(ẽ)

for some ẽ ∈ Ek , since α is strict. This yields f = grα(e), where e is the class of ẽ. �

Let M be a filtered left D-module and

· · · → Dτ Q→ Dσ P→ Dρ π→ M → 0 (13)

be a strict exact sequence of filtered left D-modules. The complex of D-modules

· · · → Dτ Q→ Dσ P→ Dρ π→ grM → 0 (14)

is then well defined where all morphisms have degree 0. We call (14) the principal
part of (13).

Proposition 10 If a left D-module M fulfils (i), then for any point x ∈ X there exist
a neighborhood U of x and a resolution of the graded module grM .

Proof The product grM ⊗O C is a module over the polynomial algebra A
.= D ⊗ C.

Construct a strict resolution of this module of the form

· · · → Dτ ⊗ C
QA→ Dσ ⊗ C

PA→ Dρ ⊗ C
πA→ grM ⊗ C → 0. (15)

By (i) there exists a surjective morphism π : Dr0 → grM . We choose a shift vec-
tor ρ = (ρ1, . . . , ρr0), where ρi

.= ordπA(ei), i = 1, . . . , r0 for the standard gener-
ators e1, . . . , er0 of the module Dr0 and introduce the filtration Dρ in this module.
The morphism π : Dρ → grM has degree 0 and generates A-morphism πA : Aρ →
grM ⊗ C. Because the algebra A is Noetherian, the submodule KerπA is generated
by some homogeneous elements p1, . . . ,pr1 . Let PA : Ar1 → Aρ be the morphism
such that PA(e′

i ) = pi , i = 1, . . . , r1 for the standard generators e′
1, . . . , e

′
r1

of Ar1 . Set
σ = (σ1, . . . , σr1), where σi

.= ordρpi , and introduce the corresponding filtration Dσ

in Dr1 . The morphism PA is homogeneous of degree 0 and Im PA = KerπA. We can
apply the same arguments to Ker PA and choose morphism QA, and so on.

By (ii) all the n morphisms PA,QA, . . . have extensions to some D-morphisms
P,Q, . . . such that the sequence (14) is a complex and P ⊗ C = PA,Q ⊗ C =
QA, . . . . It can be shown by standard homological arguments since the O-modules
grM,Dρ,Dσ , . . . are flat. By Nakayama’s lemma, exactness of (15) implies exact-
ness of (14). �
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Proposition 11 For any free graded resolution (14) there exists a free strict resolu-
tion (13) of M such that (14) is the principal part of (13).

Proof For any i = 1, . . . , r0, choose an element mi ∈ Mρi
whose image in Mρi

/Mρi−1
is equal to π(ei), and define a D-morphism π : Dr0 → M such that π(ei) = mi ,
i = 1, . . . , r0. This morphism agrees with the ρ-filtration in Dr0 and filtration in M ;
it is surjective, because so is π . Next we lift P to a D-morphism P0 : Dσ → Dρ .
For any standard generator e′

k of Dσ , the row pk
.= P(e′

k) ∈ Dρ satisfies πpk = 0,
which means πpk ∈ Mρk−1, k = 1, . . . , r1. Because of the exactness of (14), there
exists an element qk ∈ Dr0 such that ordqk = ρk − 1 and π(qk) = πpk . We have
π(pk − qk) ∈ Mρk−2 and so on up to filtration −1. Finally, we collect the lines
pk − qk − q ′

k − · · · , k = 1, . . . , r1 in a matrix P of size r0 × r1 and have πP = 0. The
principal part of the line P(e′

k) is equal to pk , that is, the principal part of P is P. By
Proposition 8, P is strict and ImP = Kerπ .

The image of the composition P Q : Dr2 → Dr0 is contained in Kerπ and
ordρ P Q(e′′) < ordτ e

′′ for each standard generator e′′ of Dr2 . Because Kerπ = Im P,
there exists an element q1 ∈ Dr1 such that ordσ q1 = ordρ P Q(e′′) and P Q(e′′) = Pq1
up to a term of filtration < ordσ q1. We make a matrix Q1 : Dr2 → Dr1 from the lines
Q1(e

′′) = q1, where e′′ runs over the set of generators of Dr2 . Consider the composi-
tion P(Q −Q1) : Dr2 → Dr0 . We now have ordρP (Q −Q1)(e

′′) < ordρP Q(e′′) and
can find an element q2 ∈ Dr1 such that ordσ q2 = ordρ P (Q−Q1)(e

′′) up to a term of
filtration < ordq2. Define a matrix Q2 by Q2(e

′′) = q2 for the set of standard gener-
ators e′′, then consider the matrix Q − Q1 − Q2, and so on. This series is finite since
· · · < ordσ q2 < ordσ q1 < ordτ e

′′. We set Q = Q −Q1 −Q2 − · · · . By Proposition 8,
P1 is strict and ImQ = KerP . We construct a matrix R such that ImR = KerQ in a
similar way, and so on. �

Proposition 12 If M is an elliptic module, then any strict resolution (13) of M is
elliptic.

Proof Consider A
.= D ⊗ C as a non-graded algebra; it is a polynomial with the

spectrum C
n. Take an arbitrary real point ξ �= 0 of the spectrum; let m be the corre-

sponding maximal ideal in A. All the terms of (15) except for the right one are free
over A and

Tor∗(grM ⊗ C,A/m) = 0,

since (grM ⊗ C) ⊗A A/m = 0 because ξ does not belong to the characteristic set of
grM ⊗ C. Therefore, tensoring (15) by A-module A/m, we get the exact sequence

· · · → Dτ ⊗ C ⊗A A/m
Q(x,ξ)→ Dσ ⊗ C ⊗A A/m

P(x,ξ)→ Dr ⊗ C ⊗A A/m → 0,

which proves ellipticity of (13). �

8 Key Lemma

Let M be a filtered D-module. The set HomD(M,D) of D-morphisms h : M →
D has a natural structure of two-side D-module since D has such a structure. It
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possesses the dual filtration ρ∗ such that ordρ∗(h) = k if h(Mi) ⊂ Di+k for any i.
In particular, Hom(Dρ,D) ∼= D−ρ , where D−ρ is a free D-module of the same rank
as Dρ with the shift vector −ρ. Any morphism of left D-modules P : Dσ → Dρ

generates the dual morphism

P ′ .= Hom(P,D) : D−ρ → D−σ , h 
→ Ph,

where we interpret an element h ∈ D−ρ as a column. The map P ′ is a morphism of
right D-modules.

Fix a point x ∈ R
n. Let

R : · · · → Dρ2
P1→ Dρ1

P0→ Dρ0 → 0 (16)

be a strict resolution of a left D-module M , where ρ0, ρ1, ρ2, . . . are some shift
vectors. The complex HomD(R,D) looks like

0 → D−ρ0
P ′

0→ D−ρ1
P ′

1→ D−ρ2 → ·· · → D−ρk−1
P ′

k−1→ D−ρk → ·· · , (17)

where D−ρi is a free right D-module of the same rank ri as Dρi and all morphisms
agree with the filtrations and P ′ means left multiplication of a column by a matrix P .
It is a complex of right D-modules.

Lemma 13 If a left D-module M satisfies (i, ii), then the sequence (17) is exact at
the terms D−ρk with k = 0, . . . ,m − 1, where m = n − dimCV(M).

Proof The principal part of (17) is the complex of modules over the graded commu-
tative algebra D:

0 → D−ρ0
P′

0→ D−ρ1 → ·· · → D−ρk−1
P′

k−1→ D−ρk → ·· · ,

which is equal to HomD(R,D), where R is the principal part of (16). Let Π be the
trunk of this complex up to the morphism P′

m−1. We are going to show that Π is
exact. By Proposition 9, R is a resolution of grM . By condition (ii), the complex
R ⊗ C is a resolution of grM ⊗ C over the polynomial algebra A

.= D ⊗ C, where
⊗ = ⊗O . This yields

Hk(Π ⊗ C) = Hk
(
HomA(R ⊗ C,A)

) ∼= Extk(grM ⊗ C,A), k < m. (18)

The right-hand side of (18) vanishes for k < m, by virtue of [15, Corollary 1, §13],
which means that the complex Π ⊗ C is acyclic. By definition, for any shift vector
ω we have Dω = ⊕iDω

i , where Dω
i is an O-module of homogeneous elements of

grading i and Dω ⊗ C = ⊕iDω
i ⊗ C, where Dω

i ⊗ C is a finite dimensional space.
Therefore,

Π = ⊕Πi, Π ⊗ C = ⊕Πi ⊗ C,

where Πi is a complex of free O-modules of finite type. As we know, the complex
Πi ⊗ C is acyclic. By Nakayama’s lemma, the complex Πi is also acyclic and the
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same true for the complex Π . By Proposition 8 the complex (17) is acyclic in degrees
k < m and the morphisms P ′

0, . . . ,P
′
m−1 are strict. �

Corollary 14 The complex (17) is elliptic in any degree k < m.

Proof Take an arbitrary real point ξ �= 0 and check that the complex Π ⊗ A/m is
acyclic, where m is the corresponding maximal ideal of the algebra A. We have
H ∗(Π ⊗ A/m) ∼= H ∗(Π) ⊗ A/m, since A-module Π is flat. This implies the first
statement, since H ∗(Π) = 0 by Lemma 13. �

9 Extension of Solutions of Overdetermined Systems

Definition Let M be a left D-module with good filtration that fulfills the condi-
tion (i). The characteristic set V = V (grM) is an algebraic cone in C

n. We say that
M is underdetermined if V = C, determined if dimCV < n, and overdetermined if
dimCV < n − 1.

Now let D = DX be the sheaf of germs of analytic differential operators in an open
set X and M be a filtered left D-module. We say that M fulfills the conditions (i, ii)
is called elliptic, overdetermined, etc., if so are Mx in any point x ∈ X. Suppose that
M can be included in a strict exact sequence of filtered left D-modules

Dσ P→ Dρ π→ M → 0, (19)

where Dσ , Dρ denote some filtrations in free left D-modules defined as in Section
3 and the filtration in M is the image of the filtration in Dρ : Mk = π(Dρ

k ), k ∈ Z.
Here P is a matrix differential operator as in (1) with analytic coefficients defined in
an open set X ⊂ R

n. It acts as a morphism of left D-modules: a 
→ aP .

Proposition 15 For any compact set K ⊂ X, the sequence (19) can be extended to a
strict exact complex of D-sheaves

· · · → Dτ Q→ Dσ P→ Dρ π→ M → 0 (20)

defined in a neighborhood of K where . . . , Dτ are filtered free D-sheaves of the same
type.

Proof Let DX be the sheaf in X whose stalks are the algebras D and Dω
X be the graded

DX-sheaf where ω is an arbitrary shift vector. Consider the sequence of graded DX-
modules

Dσ
X

P→ Dρ
X

π→ gr M → 0

generated by (19). It is exact since of Proposition 9. For k = 0,1,2, . . . we consider
O-sheaf (Ker P)k : (Dσ

X)k → (Dρ
X)k . It is a coherent analytic sheaf in the real do-

main X. Let L be a compact set in X such that K � L. By the classical theory of
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coherent sheaves the sheaf (Ker P)k is generated in each point x ∈ L by a finite set
Sk of its sections. The total set S

.= ∪kSk generates Dx -sheaf Ker Px : Dσ
x → Dρ

x at
each point x ∈ L. On the other hand, for any point x there is a finite subset qx ⊂ S
that generates the stalk (Ker P)x since the algebra Dx is Noetherian. Obviously the
set qx generates the sheaf Ker P also in a neighborhood of x. Therefore there is a
finite set F ⊂ L such that the union qL = ∪{qx, x ∈ F } generates the D-sheaf Ker P
at each point x ∈ L. Let Dt

X be a free D-sheaf with generators e1, . . . , et . Consider a
DX-morphism Q : Dt

X → Dσ
X such that qj = Q(ej ), j = 1, . . . , t are all elements of

the set qL. Define a filtration Dτ
X in Dt

X by means of a shift vector τ = (τ1, . . . , τt ),
where τj = deg qj , j = 1, . . . , t . The morphism Q : Dτ → Dρ agrees with the filtra-
tions and Im Q = Ker P. Next we consider the restriction QL of Q to L and repeat
these arguments for the D-sheaf Ker QL and so on. We obtain in this way an exact
sequence of DY -sheaves

. . .
Rx→ Dτ

Y

Qx→ Dσ
Y

P→ Dρ
Y

π→ grMY → 0

defined in a neighborhood Y of K . Then we construct a strict exact sequence (20) by
means of arguments of Propositions 10. �

Let M be a filtered left D-module as in (20) such that the stalk Mx fulfils the
conditions (i, ii). We set

dimX M .= max
X

dimC V (gr Mx ⊗ C).

Note that the function x 
→ dimCV(gr Mx ⊗C) is locally constant in X. This follows
from (ii).

Theorem 16 Let M be a left D-module as in (20) that is elliptic and overdetermined
(which implies dimX M ≤ n − 2). Let Y be a relatively compact subset of X and S

be a closed C1-submanifold of Y of dimension d = n − 2 − dimX M. There exists
an open neighborhood V of S such that any solution u of (1) in Y\V̄ has a unique
extension in X as a solution.

Example 1 Let d = 0, then the statement tells that for any point x ∈ X there exists
a compact neighborhood Kx ⊂ X such that arbitrary solution defined in X \ K is
uniquely extended to a solution in X. If the module M is not overdetermined, then
solutions of (1) in X \ K may have non-removable singularity in K , as e.g. a funda-
mental solution of a scalar operator of P .

Proof of Theorem Introduce an Euclidean structure in R
n.

Lemma 17 There exist positive constants b ≤ c < 1 that depends only on K such
that for an arbitrary subspace Z in R

n of dimension d and arbitrary open balls Y(r)

and Z(s) of radius r in Y = Z⊥, respectively in Z of radii r, s ≤ 1, cr ≤ s such that
Y(r)×Z(s) ⊂ K an arbitrary solution u of M defined in the set Y(r)\Y(br)×Z(s)

has a unique extension to Y(r) × Z(s) as a solution of M .
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Here and later we denote by Y(r ′) the ball with the same center as Y(r); notation
Z(s′) has a similar meaning. To prove the Theorem we take for an arbitrary point
x0 ∈ S the tangent subspace Z to S at x0 and set Y = Z⊥. In the case d = 0 we
take Z = 0, Y = R

n. Choose a positive number r such that Y(r)\Y(br) × Z(cr) ⊂
X\S. This choice is possible since S is contained in o(r)-neighborhood of Z. By
Lemma 17 any solution u can be extended to the set Y(r) × Z(cr). This set contains
a neighborhood of x0. We take for V the union of these neighborhoods for all x0 ∈ S

and complete the proof of Theorem. �

Proof of Lemma 17 Choose some positive numbers r0, s0 ≤ 1 such that Y(r0) ×
Z(s0) � X; we may assume that r0 = 1, s0 = c by coordinate rescaling. Set b =
cd+1, c = infU cx/4, where cx is the function as in Lemma 14. Choose a coordinate
system (y, z) in Y × Z such that the centers of Y(r) and Z(r) are in the origins.

Take a smooth function e in Y with support in Y(2b) such that e = 1 in Y(b + ε)

and set v0(x) = P0(e(y)u(x)), the function v0 is extended by zero to Y(b) × Z(c).
Take a convex polytope Π ⊂ Z(c)\Z(c/2); let Fα,α ∈ N be its faces. Let Nk be the
subset of N of faces Fα of dimension k = 0,1, . . . ,dimZ; the face Π is the only
one of dimension d

.= dimZ. The notation αk always will mean that αk ∈ Nk . We
suppose that each face Fαk

of dimension k < d is a simplex and the inequality holds

2b ≤ diamFα1 ≤ 3b (21)

for each 1-face. We call k-flag any sequence A = (αk,αk+1, . . . , αd−1) such that
Fαk

⊂ Fαk+1 ⊂ · · · ⊂ Fαd−1 . For a set G ⊂ Z and a positive ε we denote by (G)ε
the open ε-neighborhood of G.

Take a smooth function f0 in Z with compact support in (Π)b such that f0 = 1
in Π . For an arbitrary k < d and αk ∈ Nk we choose a smooth function fαk

that
fulfils

I. suppfαk
⊂ (Fαk

)b/c and
II.

∑
αk

fαk
= 1 in (∪αk

Fαk
)b .

Take an arbitrary k-flag A = (αk,αk+1, . . .) and define the function

vA = Pd−k+1
(
fαk

· · ·P2
(
fαd−1P1(f0v0)

) · · · ), (22)

where P1, . . . ,Pd+1 are differential operators as in (17) (strokes are omitted).

Lemma 18 III. The function vA is supported by (Fαk
)b .

IV. For any k + 1-flag B we have
∑

αk

vαk,B = 0,

where the sum is taken for all k-flags that contain B.

Proof of Lemma Statement III follows from I and equation IV follows from II:
∑

αk

vαk,B = Pd−k+1

∑

αk

fαk
vB = Pd−k+1vB = 0.

�
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For any 1-flag A = (α1, . . .) we have vA = vα0,A + vβ0,A, where α0, β0 ∈ N0 are
the vertices of the face Fα1 hence (α0,A) and (β0,A) are 0-flags. By III we have
suppvα0,A � (Fα0)b and similarly for vβ0,A. the left inequality (21) implies that the
supports of the distributions vα0,A and vβ0,A are disjoint. The formula (22) yields
Pd+1vα0,A = Pd+1vβ0,A = 0 hence by Lemma 14 there exist solutions to the equa-
tions

vα0,A = Pdwα0,A, vβ0,A = Pdwβ0,A (23)

with compact supports suppwα0,A � (Fα0)b/2c , suppwβ0,A � (Fβ0)b/2c . Set wA =
wα0,A + wβ0,A and have PdwA = vA. By (21) for any α0, suppwα0,A � (Fα1)b/2c ⊂
(F )3b+b/2c ⊂ (F )b/c since 3b + b/2c ≤ b/c. By IV we have

∑

α0,α1

vα0,α1,B =
∑

α1

vα1,B = 0,

where the sum is taken over all flags that contain the 2-flag B = (α2, α3, . . .). There-
fore we can assume that also

∑

α0,α1

wα0,α1,B =
∑

α1

wα1,B = 0. (24)

Define v′
A = vA − ∑

wβ,A for any 1-flag A. By (21) we have suppv′
A � (Fα0)b/c

for any 1-flag A and an arbitrary vertex Fα0 of the face Fα1 . Due to (23) we have
Pdv′

A = 0, hence by Lemma 14 there exists a solution wA to Pd−1wA = v′
A with

compact support in (Fα0)b/2c2 . Set for any 2-flag B

v′
B = vB −

∑

α1

wα1,B,

where the sum is taken over all 1-flags that contains the flag B. We have suppv′
B �

(Fα0)b/c2 . By (24) and II we have

Pd−1v
′
B = Pd−1

∑

α1

(fα1vB − wα1,B) =
∑

B⊂A

(vA − Pd−1wA) =
∑

α1

wα1,B = 0.

By Lemma 14 we can solve the equation Pd−2wB = v′
B for a function w′

B with com-
pact support in (Fα0)b/2c3 under the condition

∑

α2

wa2,C = 0

for any 3-flag C. Set

v′
C = vC −

∑
wα2,C

and have Pd−2v
′
C = 0 for any 3-flag C. Continuing arguing in this way d − 1 time,

we get the function

v′
0 = v0 −

∑

αd−1

wαd−1 ,
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where suppwαd−1 � (Fα0)b/cd−1 and P1v
′
0 = 0. We have suppv′

0 � Y(2c)×Z(c) and
v′

0 = v0 in Y × Z(c). We apply again Lemma 14 and find a solution to the equation
P0w0 = v′

0 with compact support in Y(1/2) × Z(c/2). We have P0w0 = f0P0(eu)

in Y(1/2) × Z(c/2). Because f0 = 1 in Y × Π we have P0(eu − w0) = 0, hence
P0((1−e)u+w0) = 0 in Y ×Π . The function U

.= (1−e)u+w0 fulfils the equation
P0U = 0 and coincides with u in Y(1)\Y(1/2) × Z(c/2). By uniqueness of analytic
continuation we have U = u in Y(1)\Y(c) × Z(c). �

Example 2 The statement of Theorem 16 does not hold in general for dimS =
dimX M + 1. Let R

n = Y ⊕ Z, where Z is spanned by the coordinates x1, . . . , xd .
Consider the D-module M = D/(p0,p1, . . . , pd), where

p0 = p0(∂xd+1 , . . . , ∂xn), pi = ∂xi
, i = 1, . . . , d,

where p0 is an elliptic operator with constant coefficients in Y . It is an elliptic mod-
ule and V (gr Mx) = {(x, ξ); ξ1 = · · · = ξd = p0(ξd+1, . . . , ξn) = 0} for any x ∈ R

n.
Dimension of this characteristic manifold is equal to n − d − 1 however there is no
compulsory extension for solutions of M from R

n\Z on R
n since any fundamental

solution E of p0 considered as a function in R
n has singularity in Z.

10 Moments Condition for Extension

If M is not a overdetermined module, then a solution u of M in a domain U\K may
have non removable singularity on K (Example 1). A necessary condition for a solu-
tion u to have an extension to U as a solution is vanishing of some momenta. Fix a
smooth density φ with support in an open set V ⊂ U such that φ = dx in a neighbor-
hood of K , take an arbitrary solution v of P ∗v = 0 defined in a neighborhood V of
K such that supp∇φ � V \K and consider the integral

∫

U\K
uP ∗(φv). (25)

Note that if u has extension to U as solution of M , we can integrate in (25) by parts
and get the equation

∫
φvP (u) = 0. We state an inverse implication:

Theorem 19 Let M be an elliptic D-module in X and cx be the function in X as
in Theorem 7. Let x ∈ X, 0 < r ≤ cx , Ux = Ux(r),Vx = Ux(cxr) and K ⊂ Vx be a
compact set without holes. Then an arbitrary solution of Pu = 0 defined in Ux\K
has a unique extension to Ux as a solution provided the integral (25) vanishes for any
smooth solution v of P ∗v = 0 in Vx .

Proof We may assume that suppφ ⊂ Vx and φ(x) = dx in a neighborhood W of
K . Take a smooth function e in R

n supported in W that is equal to 1 in a neigh-
borhood W0 of K . The function P(eu) is supported in W and vanishes in W0. Set
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α = P(eu)dx in Vx\K and α = 0 in K . We have α ∈ E∗(Vx)
s and for any solution

w of the equation P ′w = 0 in Vx

α(w) =
∫

Vx\K
P (eu)wdx =

∫
euP ∗(wdx) =

∫
uP ∗(φw)

since the distribution P ∗(φw) is supported in Vx\W . By the assumption the right-
hand side vanishes for any w. By Theorem 7 D there exists a distribution β ∈
E∗(Ux)

r such that Pβ = α, that is Pu′ = 0 in Ux , where u′ .= eu − β . The functions
u and u′ coincide in Ux\ supp e ∪ suppβ and are analytic in Ux\K , hence u′ = u in
K since K has no holes. �
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