PAPER

An analytic method for the inverse problem of MREPT

To cite this article: V Palamodov 2016 Inverse Problems 32 035003

View the article online for updates and enhancements.

Related content

- <u>Magnetic resonance-based reconstruction</u> method of conductivity and permittivity distributions at the Larmor frequency Habib Ammari, Hyeuknam Kwon, Yoonseop Lee et al.
- <u>Electrical tissue property imaging using</u> <u>MRI at dc and Larmor frequency</u> Jin Keun Seo, Dong-Hyun Kim, Joonsung Lee et al.
- An explicit reconstruction method for magnetic resonance electrical property tomography based on the generalized <u>Cauchy formula</u> Takaaki Nara, Tetsuya Furuichi and Motofumi Fushimi

Recent citations

- Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications Ulrich Katscher and Cornelius A.T. van den Berg
- An explicit reconstruction method for magnetic resonance electrical property tomography based on the generalized Cauchy formula Takaaki Nara et al

Inverse Problems 32 (2016) 035003 (7pp)

An analytic method for the inverse problem of MREPT

V Palamodov

Tel Aviv University

Received 19 October 2015, revised 1 December 2015 Accepted for publication 13 January 2016 Published 15 February 2016

Abstract

Magnetic resonance electric properties tomography (MREPT) is a medical imaging modality for visualizing the electrical tissue properties of the human body using radio-frequency magnetic fields. This method consists of reconstructing the admittivity distribution from the positive rotating component of the magnetic field. In the newest paper of Ammari *et al* (2015 *Inverse Problems* **31** 105001) an approximate method of reconstruction of variable admittivity was proposed. In this paper a method for exact reconstruction of the admittivity from data of the positive rotating component of the field is given.

Keywords: admittivity, Bernoulli equation, Riemann-Hilbert problem, Maxwell's equation

1. Introduction

Magnetic resonance electric properties tomography (MREPT) method is a development of electric impedance tomography (EIT) [2] and magnetic resonance EIT (MREIT) techniques [5, 6]. This technique can be applied to obtain high-resolution images of both the conductivity σ and permittivity ε distributions inside the human body. This method uses a time-harmonic magnetic field at the Larmor frequency ω inside an imaging object for determination of the admittivity $\kappa = \sigma + i\omega\varepsilon$. The positive rotating component H^+ of the magnetic field can be measured by means of the technique called B_1 mapping. It was first suggested in the early nineties by Haacke [1], see later developments in [3, 4]. Determination of κ from data of H^+ was in focus of papers Seo *et al* [6], Song and Seo [7], see also the survey [8]. A method of numerical reconstruction of the variable admittivity was given in the recent paper of Ammari, Kwon, Lee, Kang and Seo [9] based on an optimization algorithm involving solution of a semi-elliptic equation with a small parameter. This method is approximate and time consuming.

We propose a simple analytic method of reconstruction κ from knowledge of H^+ . The method is based on reduction to a Riemann–Hilbert problem for holomorphic functions.

2. Governing equation

Consider an object in a three-dimensional domain Ω that lies inside an MRI scanner with a constant magnetic field B_0 . Choose an Euclidean coordinate system (x, y, z) such that the external field equals $B_0 = (0, 0, |B_0|)$. The time-harmonic magnetic field $H = (H_x, H_y, H_z)$ in Ω at the Larmor frequency ω relates to the admittivity $\kappa = \sigma + i\omega\varepsilon$ of the object through the time-harmonic Maxwell's equations so-called 'Helmholtz equation' [6]

$$-\Delta H = \nabla \log \kappa \times (\nabla \times H) - i\omega \mu_0 \kappa H. \tag{1}$$

Here $\mu_0 = 4\pi 10^{-7} H m^{-1}$ is the magnetic permeability of free space, $\omega/2\pi = 128$ MHz is the Larmor frequency of the 3*T* MRI scanner. The magnetic permeability of the human body is close to μ_0 . Equation (1) can be written in the form

$$J \times \nabla \kappa = h, \tag{2}$$

where

$$h(\kappa) \doteq \kappa \Delta H - i\omega \mu_0 \kappa^2 H \tag{3}$$

and the current J is can be found from Maxwell's equation

 $\nabla \times H = \kappa E = J.$

3. Determination of admittivity from the total magnetic field

Suppose that a field *H* satisfying (1) is known on a domain Ω . The principal part of (2) has the singular matrix $J \times$, since $\langle J, J \times \rangle = 0$ and both sides vanish under scalar multiplication by *J*. The operator

$$P = -\langle J, J \rangle^{-2} J \times (J \times \cdot)$$

is the projection to the plane orthogonal to J. By (3), the field $p = Ph = -\langle J, J \rangle^{-2}J \times (J \times h)$ is a quadratic function of κ without a free term, that is $p = \kappa p_1 + \kappa^2 p_2$ for some fields p_1, p_2 . We have

$$\nabla \kappa = p + qJ \tag{4}$$

for some unknown function q = q(r), r = (x, y). Let v be a smooth vector field in Ω orthogonal to J and Γ be a connected integral curve of v. Let r = r(t), $0 \le t \le T$ be a parameterization of Γ such that $\partial r(t)/\partial t = v$. By (4), we obtain the equation has Bernoulli type

$$\frac{\partial \kappa(r)}{\partial t} = \langle \nabla \kappa(r), v \rangle = \langle p(r), v \rangle = \kappa \langle p_1(r), v \rangle + \kappa^2 \langle p_2(t), v \rangle.$$
(5)

It can be solved for the unknown function $\lambda = \kappa^{-1}$, since $\kappa \neq 0$. By (5)

$$\frac{\partial \lambda}{\partial t} = -\lambda \langle v, p_1 \rangle - \langle v, p_2 \rangle.$$
(6)

The general solution of (6) along Γ is

$$\lambda(r(t)) = -\exp F(r(t)) \left[\int_0^t \exp(-F) \langle v, p_2 \rangle |_{r=r(s)} \mathrm{d}s + C \right],$$

where

$$F(r(t)) = \int_0^t \langle v, p_1 \rangle \mathrm{d}s$$

and *C* is an arbitrary constant. If the admittivity κ is known at a point r = r(0), the constant *C* can be determined and the admittivity $\kappa = \lambda^{-1}$ is uniquely reconstructed on Γ . There are many smooth integral curves Γ through any point $r \in \Omega$, if the field *J* is smooth and does not vanish in Ω .

4. Conditional reconstruction from the positive rotating component

The field $H^+ = H_x + iH_y$, called positive rotating component of H, can be determined from B_1 mapping method see [3, 4]. (It is not the case for the negative rotating component $H^- = H_x - iH_y$ at present.) It is shown in [7], this component satisfies

$$\langle V^+, \nabla \log \kappa \rangle = i\omega \mu_0 H^+ \kappa - \Delta H^+, \tag{7}$$

where $V^+ \doteq -(2\partial_{\zeta}H^+, 2i\partial_{\zeta}H^+, \partial_zH^+)$, Δ is the Laplace operator in \mathbb{R}^3 , and

$$\partial_{\zeta} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \ \zeta = x + iy, \ \partial_{\zeta} = \frac{\partial}{\partial \zeta}$$

Equation (7) can be written in the form

$$\langle V^+, \, \nabla \log \kappa \rangle = \partial_{\zeta} H^+ \partial_{\bar{\zeta}} \log \kappa \, + \, \partial_z H^+ \partial_z \log \kappa,$$

where

$$\partial_{\bar{\zeta}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \mathrm{i} \frac{\partial}{\partial y} \right).$$

Suppose that $\Omega = \Omega_0 \times [0, c]$ for some c > 0, where Ω_0 is a bounded connected and simply connected open set with C^1 -boundary on $\mathbb{R}^2 \doteq \{z = 0\}$, e.g. a disc.

Theorem 1. Suppose that a solution H^+ of (7) is known on a bounded convex open set $\Omega \subset \mathbb{R}^3$ such that

$$\partial_{\zeta} H^+ \neq 0, \quad \partial_z H^+ = 0,$$
(8)

and admittivity κ is known on the boundary $\partial \Omega$. Then κ can be found on any region of interest $\Omega(c) = \Omega \cap \{z = c\}$ from solution of a Riemann–Hilbert boundary problem in $\Omega(c)$.

Proof. By (8) the basic equation (7) is reduced to the equation of Bernoulli type

$$\partial_{\bar{\zeta}}\kappa = \kappa^2 h_2 + \kappa h_1, \quad h_1 = -\frac{\Delta_3 H^+}{2\partial_{\bar{\zeta}} H^+}, \quad h_2 = \frac{i\omega\mu_0 H^+}{2\partial_{\bar{\zeta}} H^+}.$$
 (9)

The function $\lambda = \kappa^{-1}$ fulfils the equation

$$\partial_{\bar{\zeta}}\lambda = -\lambda h_1 - h_2,\tag{10}$$

which is defined on any transverse plane $\{z = \text{const}\}$. The general solution is

$$\lambda(x, y, z) = -\exp(F) \left(\frac{1}{\pi \zeta} * \exp(-F)h_2 + f \right),$$

where *f* is a holomorphic function on $\Omega(z)$ and

$$F(x, y, z) = \frac{1}{\pi\zeta} * h_1 = \frac{1}{\pi} \int \int \frac{h_1(x', y', z) dx' dy'}{x - x' + i(y - y')}$$

Note that the kernel of the convolution satisfies the classical equation

$$\partial_{\bar{\zeta}}\left(\frac{1}{\pi\zeta}\right) = \delta_0,$$

where δ_0 is the delta-function at the origin in \mathbb{R}^2 . It follows from the classical formula

$$\delta_0 = \Delta_2 \left(\frac{1}{4\pi} \log \left(x^2 + y^2 \right) \right) = \frac{1}{\pi} \partial_{\bar{\zeta}} \partial_{\zeta} (\log \bar{\zeta} + \log \zeta) = \partial_{\bar{\zeta}} \frac{1}{\pi \zeta},$$

since $\Delta_2 = 4 \partial_{\bar{\zeta}} \partial_{\zeta}$ on the complex plane. We have

$$\partial_{\zeta} F = \partial_{\zeta} \left(\frac{1}{\pi \zeta} \right) * h_1 = \delta_0 * h_1 = h_1$$
$$\partial_{\zeta} \left(\frac{1}{\pi \zeta} * \exp(-F) h_2 \right) = \exp(-F) h_2$$

and (10) follows.

By (8), we have
$$\Delta_3 H^+ = \Delta_2 H^+ = 4\partial_{\bar{\zeta}}\partial_{\zeta} H^+$$
 and

$$F = -\frac{2}{\pi\zeta} * \frac{\partial_{\bar{\zeta}}\partial_{\zeta} H^+}{\partial_{\zeta} H^+} = -\frac{2}{\pi\zeta} * \partial_{\bar{\zeta}}\log\partial_{\zeta} H^+$$

$$= -2\partial_{\bar{\zeta}}\left(\frac{1}{\pi\zeta}\right) * \log\partial_{\zeta} H^+ = -2\log\partial_{\zeta} H^+.$$

Because of (8), the function $\log \partial_{\zeta} H^+$ is well defined on the convex set $\Omega(c)$ for any *c*. This implies $\exp(-F) = (\partial_{\zeta} H^+)^2$ and by (9)

$$\exp\left(-F\right)h_{2} = \frac{1}{2}\mathrm{i}\omega\mu_{0}H^{+}\partial_{\zeta}H^{+} = \frac{\mathrm{i}\omega\mu_{0}}{4}\partial_{\zeta}(H^{+})^{2},$$

which yields

$$\lambda = -\frac{\mathrm{i}\omega\mu_0}{4} \frac{1}{\partial_{\zeta}(H^+)^2} \left(\frac{1}{\pi\zeta} * \partial_{\zeta}(H^+)^2 + f \right). \tag{11}$$

Suppose that the function $\operatorname{Re} \lambda = \operatorname{Re} \kappa^{-1}$ is known on the boundary $\partial \Omega$. The unknown function *f* satisfies the boundary condition

$$\operatorname{Re}(f \exp F)|_{\partial\Omega(c)} = -\operatorname{Re}\lambda + \operatorname{Re}\exp(F)\left(\exp(-F)h_2 * \frac{1}{\pi\zeta}\right)\Big|_{\partial\Omega(c)},$$
(12)

where $c \in \mathbb{R}$ is the parameter. This is the Riemann–Hilbert type problem in $\Omega(c)$. According to the general theory [10] section 39, if $k \ge -1$, problem (10)–(12) can be solved in an explicit form and is unique up to a linear combination of k + 1 linearly independent solutions of the homogeneous problem. The number k is called the index of the problem and is equal to

Inverse Problems 32 (2016) 035003

$$\mathbf{k} = -\frac{1}{\pi} [\arg F]_{\partial \Omega(c)},$$

where $[\varphi]_L$ denotes the increment of a function φ along the curve *L*. According to this formula, the index vanishes, since the function *F* is regular and has no zeros on the convex set $\Omega(c)$. It follows that the solution of (12) is unique up to a constant function f = ic, where *c* is real constant. The solution can be found by an explicit formula see addendum.

5. The general case

Without the assumption $\partial_z H^+ = 0$, equations (9) and (10) can be written in the form

$$\partial_{\bar{\zeta}}\kappa = h_1\kappa + h_2\kappa^2 + h_3\partial_z\kappa, h_3 = \frac{\partial_z H^+}{2\partial_{\zeta} H^+}$$

Theorem 2. Suppose that data of positive rotating components of two magnetic fields H and \tilde{H} are available such that

$$\frac{\partial_z \tilde{H}^+}{\partial_\zeta \tilde{H}^+} \neq \frac{\partial_z H^+}{\partial_\zeta H^+} \tag{13}$$

on a cylinder $\Omega = \Omega_0 \times [0, c]$. Then λ can be determined in Ω from solution of a Riemann-Hilbert problem in Ω_0 .

Proof. Let

$$\partial_{\bar{\zeta}}\lambda = -h_1\lambda - h_2 + h_3\partial_z\lambda,\tag{14}$$

$$\partial_{\tilde{c}}\lambda = -\tilde{h}_2\lambda - \tilde{h}_2 + \tilde{h}_3\partial_z\lambda \tag{15}$$

be the basic equations for $\lambda = \kappa^{-1}$ obtained from data of H^+ and \tilde{H}^+ . By subtracting, we get

$$0 = (\tilde{h}_1 - h_1)\lambda + (\tilde{h}_2 - h_2) + (h_3 - \tilde{h}_3)\partial_z\lambda,$$

$$\partial_z\lambda = \frac{h_1 - \tilde{h}_1}{h_3 - \tilde{h}_3}\lambda + \frac{h_2 - \tilde{h}_2}{h_3 - \tilde{h}_3},$$

where $h_3 - \tilde{h}_3 \neq 0$ according to (13). Solving the last equation yields

$$\lambda(r, z) = \exp(A(r, z)) \int_0^z \exp(-A(r, t)) \frac{h_2(r, t) - \tilde{h}_2(r, t)}{h_3(r, t) - \tilde{h}_3(r, t)} dt + \lambda(r, 0),$$

where r = (x, y) and

$$A(x, y, z) = \int_0^z \frac{h_1(r, t) - \tilde{h}_1(r, t)}{h_3(r, t) - \tilde{h}_3(r, t)} dt.$$

It follows from (14) and (15)

$$\partial_{\bar{\zeta}}\lambda = \frac{\tilde{h}_3h_1 - h_3\tilde{h}_1}{h_3 - \tilde{h}_3}\lambda + \frac{\tilde{h}_3h_2 - h_3\tilde{h}_2}{h_3 - \tilde{h}_3}$$

We set z = 0 and follow the method of section 4

$$\lambda(r, 0) = \exp \gamma(r) \left(\exp(-\gamma(r))g_2(r, 0) * \frac{1}{\pi\zeta} + f(x + iy) \right)$$

where f is an arbitrary holomorphic function in Ω_0 and

$$G(r) = \frac{1}{\pi\zeta} * g_1(r, 0), g_1 = \frac{\tilde{h}_3 h_1 - h_3 \tilde{h}_1}{h_3 - \tilde{h}_3}, g_2 = \frac{\tilde{h}_2 h_3 - h_2 \tilde{h}_3}{h_3 - \tilde{h}_3}.$$

To compute f, we consider the Riemann–Hilbert problem

$$\operatorname{Re}\left(f\exp G|_{\partial\Omega_0}\right) = \operatorname{Re}\lambda(r,0)|_{r\in\partial\Omega_0} - \operatorname{Re}\exp G\left(\left(\exp(-G)g_2\right)*\frac{1}{\pi\zeta}\right)\Big|_{r\in\partial\Omega_0},$$

where data of λ on the skeleton { $r \in \partial \Omega_0$, z = 0} of the domain Ω are supposed known. The index equals

$$k = -\frac{1}{\pi} [\arg G]_{\partial \Omega_0}.$$

6. Conclusion

It is shown that the governing equation (7) has solution (11) depending only on the positive rotating component of a magnetic field if the vertical derivative of the field may be neglected. The holomorphic function f is defined on each horizontal plane from the Riemann–Hilbert problem (12). In the general case, our method is based on data of two magnetic fields H^+ , \tilde{H}^+ that are in the 'general position'. Instead of the family of Riemann–Hilbert problems, only one problem at z = 0 need to be solved. The explicit solution of the Riemann–Hilbert problem with zero index is given below.

7. Addendum: Riemann–Hilbert problem

Theorem 3. Let ω be a bounded simply connected open set the complex plane with smooth boundary, γ and b be Hölder continuous functions on $\partial \omega$. If $[\arg \gamma]_{\partial \omega} = 0$, then a solution of the Riemann–Hilbert problem

$$\operatorname{Re}\left(\gamma(\zeta)f(\zeta)\right) = b(\zeta), \, \zeta \in \partial\omega \tag{16}$$

can be found in an explicitly form. The solution is unique up to a pure imaginary constant.,

For the general case see [10] (be causious of misprints).

Proof. For simplicity, we assume that ω is the unit disc. Let g be an arbitrary Hölder continuous function on $\partial \omega$ such that $[\arg g] = 0$. The function $\log g$ is well defined on the boundary and the Cauchy integral

$$\varphi_{\pm}(z) = \frac{1}{2\pi i} \int_{\partial \omega} \frac{\log g(\zeta) d\zeta}{\zeta - z}$$

is well defined for $z \in \mathbb{C} \setminus \partial \omega$, where the curve $\partial \omega$ is oriented counter clockwise. We denote it by $\varphi_+(z)$ for $z \in \omega$ and by $\varphi_-(z)$ for $z \in \mathbb{C} \setminus \overline{\omega}$. By the Plemelj theorem [10], both functions

have continuous limits on $\partial \omega$ and fulfils $\varphi_+ - \varphi_- = \log g$. This yields

$$\exp\left(\varphi_{\perp}\right) = g \exp\left(\varphi_{\perp}\right). \tag{17}$$

In the similar way, we define the functions

$$A_{\pm}(z) = \frac{1}{2\pi i} \int_{\partial \omega} \frac{a(\zeta) d\zeta}{(\zeta - z) \exp \varphi_{\pm}(\zeta)}$$

where $\varphi_{\pm}(\zeta)$ means the limit of φ_{\pm} from ω , and set $\psi_{\pm} = \exp(\varphi_{\pm})A_{\pm}$. By (17) we have on $\partial \omega$

$$\psi_{+} - g\psi_{-} = \exp(\varphi_{+})A_{+} - g\exp(\varphi_{-})A_{-},$$

= $\exp(\varphi_{+})(A_{+} - A_{-}) = a,$ (18)

where the equalion

$$A_+ - A_- = \frac{a}{\exp\left(\varphi_+\right)}$$

follows from the Plemelj theorem.

Set now $g = -\gamma^{-1}\bar{\gamma}$, $a = \gamma^{-1}b$ and have $[\arg g] = 0$. Define

$$f(z) = \psi_+(z) + \bar{\psi}_-(z^*),$$

where $\psi^*(z) = \psi_-(z^*)$, $z^* = 1/\overline{z}$. This function is holomorphic in ω and by (18)

$$\begin{aligned} \mathcal{P}\operatorname{Re}\left(\gamma f\right) &= \gamma f + \bar{\gamma}\bar{f} = \gamma \left(f + \gamma^{-1}\bar{\gamma}\bar{f}\right) = \gamma \left(f - g\bar{f}\right), \\ &= \gamma \left(\psi_{+} - g\psi_{-} + \bar{\psi}_{-} - \bar{g}\bar{\psi}_{+}\right) = \gamma \left(a - \bar{g}\bar{a}\right), \\ &= \gamma a + \bar{\gamma}\bar{a} = 2\operatorname{Re}\gamma a = 2b \end{aligned}$$

on the boundary of ω , which yields (16).

References

- Haacke E M, Petropoulos L S, Nilges E W and Wu D H 1991 Extraction of conductivity and permittivity using magnetic resonance imaging *Phys. Med. Biol.* 36 723–34
- Holder D S 2005 Electrical Impedance Tomography: Methods, History and Applications (Bristol: Institute of Physics Publishing)
- [3] Sacolick L I, Wiesinger F, Hancu I and Vogel M W 2010 B1 mapping by Bloch-Siegert shift Magn. Reson. Med. 63 1315-22
- [4] Nehrke K and Börnert P 2012 DREAM—a novel approach for robust, ultrafast, multislice B1 mapping Magn. Reson. Med. 68 1517–26
- [5] Seo J K and Woo E J 2011 Magnetic resonance electrical impedance tomography (MREIT) SIAM Rev. 53 40–68
- [6] Seo J K, Kim D H, Lee J, Kwon O I, Sajib S Z K and Woo E J 2012 Electrical tissue property imaging using MRI at dc and Larmor frequency *Inverse Problems* 28 084002
- [7] Song Y and Seo J K 2013 Conductivity and permittivity image reconstruction at the Larmor frequency using MRI SIAM J. Appl. Math. 73 2262–80
- [8] Katscher U, Kim D-H and Seo J K 2013 Recent progress and future challenges in MR electric properties tomography *Comput. Math. Methods Med.* 546562
- [9] Ammari H, Kwon H, Lee Y, Kang K and Seo J K 2015 Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the Larmor frequency *Inverse Problems* 31 105001
- [10] Muskhelishvili N I 1958 Singular Integral Equations: Boundary Problems of Functions Theory and Their Applications to Mathematical Physics 1st edn (Groningen, Berlin: Noordhoff, Springer) 1972
- [11] Taylor M E 1997 Partial Differential Equations: I. Basic Theory (Berlin: Springer)