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Abstract
Magnetic resonance electric properties tomography (MREPT) is a medical
imaging modality for visualizing the electrical tissue properties of the human
body using radio-frequency magnetic fields. This method consists of recon-
structing the admittivity distribution from the positive rotating component of
the magnetic field. In the newest paper of Ammari et al (2015 Inverse
Problems 31 105001) an approximate method of reconstruction of variable
admittivity was proposed. In this paper a method for exact reconstruction of
the admittivity from data of the positive rotating component of the field is
given.

Keywords: admittivity, Bernoulli equation, Riemann–Hilbert problem,
Maxwellʼs equation

1. Introduction

Magnetic resonance electric properties tomography (MREPT) method is a development of
electric impedance tomography (EIT) [2] and magnetic resonance EIT (MREIT) techniques
[5, 6]. This technique can be applied to obtain high-resolution images of both the conductivity
σ and permittivity ε distributions inside the human body. This method uses a time-harmonic
magnetic field at the Larmor frequency ω inside an imaging object for determination of the
admittivity i .k s we= + The positive rotating component H+ of the magnetic field can be
measured by means of the technique called B1 mapping. It was first suggested in the early
nineties by Haacke [1], see later developments in [3, 4]. Determination of κ from data of H+

was in focus of papers Seo et al [6], Song and Seo [7], see also the survey [8]. A method of
numerical reconstruction of the variable admittivity was given in the recent paper of Ammari,
Kwon, Lee, Kang and Seo [9] based on an optimization algorithm involving solution of a
semi-elliptic equation with a small parameter. This method is approximate and time
consuming.

We propose a simple analytic method of reconstruction κ from knowledge of H+. The
method is based on reduction to a Riemann–Hilbert problem for holomorphic functions.
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2. Governing equation

Consider an object in a three-dimensional domain Ω that lies inside an MRI scanner with a
constant magnetic field B0. Choose an Euclidean coordinate system x y z, ,( ) such that the
external field equals B B0, 0, .0 0( ∣ ∣)= The time-harmonic magnetic field H H H H, ,x y z( )=
in Ω at the Larmor frequency ω relates to the admittivity ik s we= + of the object through
the time-harmonic Maxwellʼs equations so-called ‘Helmholtz equation’ [6]

H H Hlog i . 10( ) ( )k wm k-D =  ´  ´ -

Here H m4 100
7 1m p= - - is the magnetic permeability of free space, 2 128 MHzw p = is

the Larmor frequency of the T3 MRI scanner. The magnetic permeability of the human body
is close to 0m . Equation (1) can be written in the form

J h, 2( )k´  =

where

h H Hi 30
2( ) ( )k k wm kD -

and the current J is can be found from Maxwellʼs equation

H E J.k ´ = =

3. Determination of admittivity from the total magnetic field

Suppose that a field H satisfying (1) is known on a domain Ω. The principal part of (2) has the
singular matrix J×, since J J, 0⟨ ⟩´ = and both sides vanish under scalar multiplication by J.
The operator

P J J J J, 2⟨ ⟩ ( ·)= - ´ ´-

is the projection to the plane orthogonal to J. By (3), the field p Ph J J J, 2⟨ ⟩= = - ´-

J h( )´ is a quadratic function of κ without a free term, that is p p p1
2

2k k= + for some
fields p p, .1 2 We have

p qJ 4( )k = +

for some unknown function q q r r x y, , .( ) ( )= = Let v be a smooth vector field in Ω

orthogonal to J and Γ be a connected integral curve of v. Let r r t t T, 0( )  = be a
parameterization of Γ such that r t t v.( )¶ ¶ = By (4), we obtain the equation has Bernoulli
type

r

t
r v p r v p r v p t v, , , , . 51

2
2

( ) ⟨ ( ) ⟩ ⟨ ( ) ⟩ ⟨ ( ) ⟩ ⟨ ( ) ⟩ ( )k
k k k

¶
¶

=  = = +

It can be solved for the unknown function ,1l k= - since 0.k ¹ By (5)

t
v p v p, , . 61 2⟨ ⟩ ⟨ ⟩ ( )l

l
¶
¶

= - -

The general solution of (6) along Γ is

r t F r t F v p s Cexp exp , d ,
t

r r s
0

2( ( )) ( ( )) ( )⟨ ⟩∣ ( )
⎡
⎣⎢

⎤
⎦⎥òl = - - +=
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where

F r t v p s, d
t

0
1( ( )) ⟨ ⟩ò=

and C is an arbitrary constant. If the admittivity κ is known at a point r r 0 ,( )= the constant C
can be determined and the admittivity 1k l= - is uniquely reconstructed on .G There are
many smooth integral curves Γ through any point r Î W, if the field J is smooth and does not
vanish in Ω.

4. Conditional reconstruction from the positive rotating component

The field H H Hi ,x y= ++ called positive rotating component of H, can be determined from
B1 mapping method see [3, 4]. (It is not the case for the negative rotating component
H H Hix y= -- at present.) It is shown in [7], this component satisfies

V H H, log i , 70⟨ ⟩ ( )k wm k = - D+ + +

where V H H H2 , 2i , ,z( ) - ¶ ¶ ¶ Dz z
+ + + + is the Laplace operator in ,3 and

x y
x y

1

2
i , i , .

⎛
⎝⎜

⎞
⎠⎟ z

z
¶ =

¶
¶

-
¶
¶

= + ¶ =
¶
¶

z z

Equation (7) can be written in the form

V H H, log log log ,z z⟨ ⟩ ¯k k k = ¶ ¶ + ¶ ¶z z
+ + +

where

x y

1

2
i .¯

⎛
⎝⎜

⎞
⎠⎟¶ =

¶
¶

+
¶
¶

z

Suppose that c0,0 [ ]W = W ´ for some c 0,> where 0W is a bounded connected and simply
connected open set with C1-boundary on z 0 ,2 { } = e.g. a disc.

Theorem 1. Suppose that a solution H+ of (7) is known on a bounded convex open set
3W Ì such that

H H0, 0, 8z ( )¶ ¹ ¶ =z
+ +

and admittivity κ is known on the boundary .¶W Then κ can be found on any region of interest
c z c( ) { }ÇW = W = from solution of a Riemann–Hilbert boundary problem in c .( )W

Proof. By (8) the basic equation (7) is reduced to the equation of Bernoulli type

h h h
H

H
h

H

H
,

2
,

i

2
. 92

2 1 1
3

2
0 ( )¯k k k

wm
¶ = + = -

D
¶

=
¶

z
z z

+

+

+

+

The function 1l k= - fulfils the equation

h h , 101 2 ( )¯l l¶ = - -z

which is defined on any transverse plane z const .{ }= The general solution is

x y z F F h f, , exp
1

exp ,2( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟l

pz
= - * - +
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where f is a holomorphic function on z( )W and

F x y z h
h x y z x y

x x y y
, ,

1 1 , , d d

i
.1

1( ) ( )
( )ò òpz p

= * =
¢ ¢ ¢ ¢

- ¢ + - ¢

Note that the kernel of the convolution satisfies the classical equation

1
,0¯

⎛
⎝⎜

⎞
⎠⎟pz

d¶ =z

where 0d is the delta-function at the origin in .2 It follows from the classical formula

x y
1

4
log

1
log log

1
,0 2

2 2( ) ( ¯ )¯ ¯⎜ ⎟⎛
⎝

⎞
⎠d

p p
z z

pz
= D + = ¶ ¶ + = ¶z z z

since 42 ¯D = ¶ ¶z z on the complex plane. We have

F h h h

F h F h

1
,

1
exp exp

1 0 1 1

2 2( ) ( )

¯ ¯

¯

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

pz
d

pz

¶ = ¶ * = * =

¶ * - = -

z z

z

and (10) follows.

By (8), we have H H H43 2 ¯D = D = ¶ ¶z z
+ + + and

F
H

H
H

H H

2 2
log

2
1

log 2 log .

¯
¯

¯
⎛
⎝⎜

⎞
⎠⎟

pz pz

pz

=- *
¶ ¶

¶
= - * ¶ ¶

=- ¶ * ¶ = - ¶

z z

z
z z

z z z

+

+
+

+ +

Because of (8), the function Hlog¶z + is well defined on the convex set c( )W for any c. This
implies F Hexp 2( ) ( )- = ¶z + and by (9)

F h H H Hexp
1

2
i

i

4
,2 0

0 2( ) ( )wm
wm

- = ¶ = ¶z z
+ + +

which yields

H
H f

i

4

1 1
. 110

2
2

( )
( ) ( )

⎛
⎝⎜

⎞
⎠⎟l

wm
pz

= -
¶

* ¶ +
z

z+
+

Suppose that the function Re Re 1l k= - is known on the boundary .¶W The unknown
function f satisfies the boundary condition

f F F F hRe exp Re Re exp exp
1

, 12c

c

2( )∣ ( ) ( ) ( )( )
( )

⎛
⎝⎜

⎞
⎠⎟l

pz
= - + - *¶W

¶W

where c Î is the parameter. This is the Riemann–Hilbert type problem in c( )W . According
to the general theory [10] section 39, if k 1, - problem (10)–(12) can be solved in an
explicit form and is unique up to a linear combination of k 1+ linearly independent solutions
of the homogeneous problem. The number k is called the index of the problem and is equal to
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Fk
1

arg ,c[ ] ( )p
= - ¶W

where L[ ]j denotes the increment of a function j along the curve L. According to this
formula, the index vanishes, since the function F is regular and has no zeros on the convex set

c .( )W It follows that the solution of (12) is unique up to a constant function f ci ,= where c is
real constant. The solution can be found by an explicit formula see addendum.

5. The general case

Without the assumption H 0,z¶ =+ equations (9) and (10) can be written in the form

h h h h
H

H
,

2
.z

z
1 2

2
3 3¯k k k k¶ = + + ¶ =

¶
¶

z
z

+

+

Theorem 2. Suppose that data of positive rotating components of two magnetic fields H and
H̃ are available such that

H

H

H

H
13z z˜

˜ ( )¶
¶

¹
¶
¶z z

+

+

+

+

on a cylinder c0, .0 [ ]W = W ´ Then λ can be determined in W from solution of a Riemann–
Hilbert problem in .0W

Proof. Let

h h h , 14z1 2 3 ( )¯l l l¶ = - - + ¶z

h h h 15z2 2 3˜ ˜ ˜ ( )¯l l l¶ = - - + ¶z

be the basic equations for 1l k= - obtained from data of H+ and H .˜ + By subtracting, we get

h h h h h h

h h

h h

h h

h h

0 ,

,

z

z

1 1 2 2 3 3

1 1

3 3

2 2

3 3

( ˜ ) ( ˜ ) ( ˜ )
˜
˜

˜
˜

l l

l l

= - + - + - ¶

¶ =
-
-

+
-
-

where h h 03 3
˜- ¹ according to (13). Solving the last equation yields

r z A r z A r t
h r t h r t

h r t h r t
t r, exp , exp ,

, ,

, ,
d , 0 ,

z

0

2 2

3 3
( ) ( ( )) ( ( )) ( ) ˜ ( )

( ) ˜ ( )
( )òl l= -

-
-

+

where r x y,( )= and

A x y z
h r t h r t

h r t h r t
t, ,

, ,

, ,
d .

z

0

1 1

3 3
( ) ( ) ˜ ( )

( ) ˜ ( )ò=
-
-

It follows from (14) and (15)

h h h h

h h

h h h h

h h
.3 1 3 1

3 3

3 2 3 2

3 3

˜ ˜
˜

˜ ˜
˜¯l l¶ =

-
-

+
-
-

z
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We set z=0 and follow the method of section 4

r r r g r f x y, 0 exp exp , 0
1

i ,2( ) ( ) ( ( )) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟l g g

pz
= - * + +

where f is an arbitrary holomorphic function in 0W and

G r g r g
h h h h

h h
g

h h h h

h h

1
, 0 , , .1 1

3 1 3 1

3 3
2

2 3 2 3

3 3
( ) ( )

˜ ˜
˜

˜ ˜
˜pz

= * =
-
-

=
-
-

To compute f, we consider the Riemann–Hilbert problem

f G r G G gRe exp Re , 0 Re exp exp
1

,r

r
20 0

0

( ∣ ) ( )∣ ( ( ) )
⎛
⎝⎜

⎞
⎠⎟l

pz
= - - *¶W Î¶W

Î¶W

where data of λ on the skeleton r z, 00{ }Î ¶W = of the domain Ω are supposed known. The
index equals

k G
1

arg .
0

[ ]
p

= - ¶W

6. Conclusion

It is shown that the governing equation (7) has solution (11) depending only on the positive
rotating component of a magnetic field if the vertical derivative of the field may be neglected.
The holomorphic function f is defined on each horizontal plane from the Riemann–Hilbert
problem (12). In the general case, our method is based on data of two magnetic fields H H, ˜+ +

that are in the ‘general position’. Instead of the family of Riemann–Hilbert problems, only
one problem at z=0 need to be solved. The explicit solution of the Riemann–Hilbert
problem with zero index is given below.

7. Addendum: Riemann–Hilbert problem

Theorem 3. Let w be a bounded simply connected open set the complex plane with smooth
boundary, g and b be Hölder continuous functions on .w¶ If arg 0,[ ]g =w¶ then a solution of
the Riemann–Hilbert problem

f bRe , 16( ( ) ( )) ( ) ( )g z z z z w= Î ¶

can be found in an explicitly form. The solution is unique up to a pure imaginary constant.,

For the general case see [10] (be causious of misprints).

Proof. For simplicity, we assume that ω is the unit disc. Let g be an arbitrary Hölder
continuous function on w¶ such that garg 0.[ ] = The function glog is well defined on the
boundary and the Cauchy integral

z
g

z

1

2 i

log d( ) ( )
òj

p
z z

z
=

-w


¶

is well defined for z ⧹ wÎ ¶ , where the curve w¶ is oriented counter clockwise. We denote it
by z( )j+ for z wÎ and by z( )j- for z .⧹ ¯ wÎ By the Plemelj theorem [10], both functions
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have continuous limits on w¶ and fulfils glog .j j- =+ - This yields

gexp exp . 17( ) ( ) ( )j j=+ -

In the similar way, we define the functions

A z
a

z

1

2 i

d

exp
,( ) ( )

( ) ( )òp
z z

z j z
=

-w


¶ +

where ( )j z+ means the limit ofj+ from ,w and set Aexp .( )y j=   By (17) we have on w¶

g A g A

A A a

exp exp ,

exp , 18

( ) ( )
( )( ) ( )

y y j j
j

- = -
= - =

+ - + + - -

+ + -

where the equalion

A A
a

exp ( )j
- =+ -

+

follows from the Plemelj theorem.
Set now g 1¯g g= - - , a b1g= - and have garg 0.[ ] = Define

f z z z ,( ) ( ) ¯ ( )*y y= ++ -

where z z z z, 1 .( ) ( ) ¯* * *y y= =- This function is holomorphic in ω and by (18)

f f f f f f gf

g g a ga

a a a b

2 Re ,

,

2 Re 2

1( ) ¯ ¯ ( ¯ ¯ ) ( ¯ )
( ¯ ¯ ¯ ) ( ¯ ¯)

¯ ¯

g g g g g g g
g y y y y g
g g g

= + = + = -
= - + - = -
= + = =

-

+ - - +

on the boundary of ,w which yields (16). ,
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