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Abstract. A method of reconstruction of a strain tensor " in a solid body was described that
uses non redundant data of the axial (logitudinal) and of the traceless normal ray integrals.

1 Introduction

Information about residual elastic strain is of primary importance in understanding deformation
and stress within structural material and components. The evaluation of this strain requires
imaging a six-component tensor quantity in three dimensions. An application of tomographic
ideas to reconstruction of small residual strain �elds in a body from data of di¤raction pattern
under penetrated X-ray or neutron radiation was proposed by A. Korsunsky et al [3],[4]. The
mathematical model is the longitudinal (axial) line transform of a strain tensor " [4]. Note that all
the integrals vanish if " is a potential tensor that is " = Du for a small deformation u; where D is
the di¤erential for symmetric tensors. Adhemar de Saint-Venant (1860) introduced the di¤erential
consistency equation V" = 0 for a small tensor �eld called later by his name. Boussinesq (1871),
Beltrami (1889), Cesaro (1906) proved its su¢ ciency for a 2-tensor to be potential in a simply
connected domain. The general case was considered by Volterra [14]. Sharafutdinov [11] studied a
more general situation. He has proved that a tensor �eld g in Rn: of rankm with compact support is
potential if (and only if) the axial line transform Lg of g vanishes for all lines. Recently, Paternain,
Salo and Uhlmann proved that this property holds for the geodesic transform in simple surfaces
with boundary (for any pair of points on the boundary, there is only one connecting geodesic). See
[6] for further results in this direction.
A reconstruction of a 2-tensor �eld from only knowledge of Vg is impossible, since the Saint-

Venant tensor vanishes for any potential �eld. The solenoidal part of a tensor �eld is the unique
solution of the system D� (sg) = 0; V (sg) = Vg in Rn that tends to zero at in�nity. Sharafutdinov
[11] and Denisjuk [2] gave integral formulas expressing the solenoidal part sg of the tensor g in
terms of Vg: Denisjuk [2] has developed an algorithm for reconstruction of the �eld Vg from data
of axial line integrals over rays in Rn with sources on a curve. Other methods of reconstruction
of the solenoidal part were given in [12]. Note that the support of the solenoidal gauge sg is not
compact unless g ful�ls an in�nite number of orthogonality conditions. Thereby the information
contained in the axial line integrals of g and inherited in sg is spread over the whole space.
This paper is focused on the case n = 3: In Sec. 3 we give a new method of recovering of V"

from data of axial line integrals for a 2-tensor �eld ". The integral data is collected from rays
emanated from a curve � ful�lling Tuy�s completeness condition [13]. In particular, any curve �
in the improper sphere can be taken if the end points of � are antipodal. In this case the integrals
are taken over lines in E parallel to one of vectors 
 2 �: For determination of a 2-tensor �eld,
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Figure 1: Strain in plastic protractor seen under polarized light

we need measurements of second order derivatives of the ray integrals with respect to the source
point.
The polarization tomography is another method of reconstruction of a strain �eld in a trans-

parent solid see Fig.1. It is based on measurements of transformation of the polarization ellipse
of the penetrating light. The mathematical model is the line integral T" of the traceless normal
(truncated transverse) part of the stress �eld ". Paper [1] is focused on a practical implementation,
see also the list of references therein. For the mathematical background, see [11]. Puro [10] devel-
oped a method of reconstruction of the stress tensor by means of photoelasticity method using of
magnetic �elds for obtaining additional information. In [5] a method of complete reconstruction
of a traceless 2-tensor " is proposed form knowledge of the line integral T" over all lines orthogo-
nal to three or six vectors in general position. We give a simple method of reconstruction of the
displacement form ' from data of T" for tensor any tensor " whose axial line integrals vanish (§5).
The acquisition geometry is the same as above. The methods of Sec. 3-5 are combined in Sec.
6 for an algorithm of complete reconstruction of an arbitrary strain tensor " from non redundant
data of ray integrals X" and T".
I thank V. Sharafutdinov for a useful discussion related to paper [5]. The author is grateful to

the anonymous reviewers whose comments helped to improve this text.

2 Symmetric tensors and di¤erentials

Let E be an Euclidean space of dimension 3. Choose an euclidean coordinate system
�
x1; x2; x3

�
:

We will denote by yi; zi; ui; vi; ::: i = 1; 2; 3; components of points or vectors y; z; u; v; ::: 2 E;
respectively. Tensor �elds of rank 1 and 2 are expressions of the form

f =
X

fidx
i; g =

X
gijdx

i � dxj ;

respectively, where the symbol � means a symmetric product that is dxj �dxi = dxi �dxj : The com-
ponents fi and gij = gji are functions in E which transform as vectors and bivectors, respectively,
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under coordinate changes. We can write any 2-tensor �eld g de�ned in U � E as a function in
U � E � E bilinear and symmetric in vector variables

g (x;u; v) =
X

gij (x)u
ivj ; u =

�
u1; u2; u3

�
; v =

�
v1; v2; v3

�
:

We will also use the abbreviation g (y; v) + g (y; v; v) : The spaces of smooth or singular (gener-
alized) tensor �elds in E of ramk 1 and 2 we denote by �1 and �2 respectively. The symmetric
di¤erential D : �1 ! �2 reads

Df = g; gii = @ifi; gij =
1

2
(@ifj + @jfi) ; @i = @=@x

i; (1)

where no summation on repeating indices is assumed. Let �2 be the space (bundle) of skew
symmetric di¤erential forms of degree 2 and B4 + �2 
S �2 be the symmetric square of this
bundle. An element b 2 B4 is a tensor �eld whose components bij;kl are functions in E that are
skew symmetric in (i; j) and in (k; l) and symmetric with respect to permutation (i; j) $ (k; l) :
The Saint-Venant operator V : �2 ! B4 is de�ned for a tensor �eld g 2 �2 by

(Vg)ij;kl + @i@kgjl � @i@lgjk � @j@kgil + @j@lgik:
The �elds @i; @j ; @k; @l can be replaced here by arbitrary tangent vectors �; �; 
; � in E:

(Vg)��;
� = @�@
g (�; �)� @�@�g (�; 
)� @�@
g (�; �) + @�@�g (�; 
) : (2)

Tensor Vg vanishes for any potential �eld g = Df; since VD = 0.

3 Reconstruction from ray integrals

For a 2-tensor �eld g in E with compact support and bounded components, ay and line integrals

Xg (y; v) =

Z 1

0

g (y + tv; v) dt; Lg (y; v) =

Z 1

�1
g (y + tv; v) dt

are well de�ned for any point y 2 E and any unit vector v; y is called source point for the ray
integral. For an arbitrary vector � 2 E; we denote

@�Xg (y; v) = h�;ryiXg (y; v) ; @;�Xg (y; v) =
@

@t
Xg (y; v + t�)jt=0 :

Let S2 denote the unit sphere in E and 
 be area form in S2: For p 2 R; ! 2 S2; H (p; !) will
mean the plane fh!; xi = pg in E;

Theorem 1 Let � � E be a piecewise smooth curve and g be a smooth 2-tensor g with compact
support in En�: For an arbitrary point x 2 En� such that any plane H through x meets � trans-
versely at a point y; tensor Vg (x) can be reconstructed from data of ray integrals with source points
in � by

(Vg)��;
� (x) = �
1

8�2

Z
!2S2

@pRH(p;!) jp=hx;!i (�; �; 
; �) 
; (3)

where �; �; 
; � 2 E are arbitrary, and for any plane H through the point y 2 �

RH (�; �; 
; �) = RH (h�; !i�; !; h�; !i 
; !)� RH (h�; !i�; !; h�; !i 
; !) (4)

� RH (h�; !i�; !; h
; !i �; !) + RH (h�; !i�; !; h
; !i �; !) ;
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where

RH (�; !;�; !) =
1

2

Z 2�

0

@�@�@
3
;!Xg (y; v) d�: (5)

Remark. This acquisition geometry is essentially the same as in paper [8], where a di¤erential
1-form is reconstructed from �rst derivatives of its ray integrals. For reconstruction of a 2-tensor, we
need the second derivatives @2Xg (y; v) =@yi@yj of the ray integrals. This is a non redundant volume
of the integral data. In medical tomography the similar acquisition geometry is implemented by
rotation of the pair consisting of a X-ray source and a plate of detectors on opposite side of the
patient. This complicated machinery is not necessary for strain tomography of solid samples. Here
the X-ray or the neutron source and the detectors may be �xed, whereas a specimen is mechanically
manipulated following the given relative acquisition geometry.

Lemma 2 For an arbitrary 2-tensor g, any plane H = H (p; !) ; any point y 2 H and arbitrary
vectors �; � parallel to H, we have

@p

Z
H(p;!)

(Vg)!�;!� dH =
1

2

Z
v2S(!)

@�@�@
3
;!Xg (y; v) d�; (6)

where S (!) is the unit circle in H (0; !) ; d� is the angular measure in S (!) and dH is the area
density in the plane H (p; !).

Proof of Lemma. By (2)Z
H(p;!)

(Vg)!�;!� dH = @2p

Z
H(p;!)

g (x;�; �) dH; (7)

Here and below g is written as a bilinear function of vector variables. For arbitrary y 2 H and any
unit vector v parallel to H;

@;!Xg (y; v) =

Z 1

0

@!g (y + tv; v; v) tdt+ 2

Z 1

0

g (y + tv;!; v) dt;

:::

@3;!Xg (y; v) =

Z 1

0

@3!g (y + tv; v; v) t
3dt (8)

+ 6

Z 1

0

@2!g (y + tv;!; v) t
2dt+ 6

Z 1

0

@!g (y + tv;!; !) tdt:

Take an arbitrary point y 2 � and a plane H (p; !) that meets � transversely in y: Choose a basis
e2; e3 in H (0; !) and have v = cos �e2 + sin �e3 for some � 2 S1. We have

g (y + tv;!; v) t = g (x;!; e2)
�
x2 � y2

�
+ g (x;!; e3)

�
x3 � y3

�
where x + y + tv 2 H (p; !) ; x2 � y2 = t cos �; x3 � y3 = t sin �: Substitute this equation in (8),
integrate against the form d� and take into account that tdtd� = dH and @� = h�;rxi :Z 2�

0

@�@
3
;!Xg (y; v) d� =

3X
i;j=2

Z
H

@�@
3
!g (x; ei; ej) (x� y)

i
(x� y)j dH

+ 6
3X
j=2

Z
H

@�@
2
!g (x;!; ej) (x� y)

j
dH

+ 6

Z
H

@�@!g (x;!; !) dH:
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Integrating by parts yieldsZ 2�

0

@�@
3
;!Xg (y; v) d� = �2

Z
H

@3!g (x; ei; �) (x� y)
i
dH � 6

Z
H

@2!g (x;!; �) dH;

since the integral of @�@!g over H vanish. Integrating by parts once again we getZ 2�

0

@�@�@
3
;!Xg (y; v) d� = �2

Z
H

@�@
3
!g (x; ei; �) y

idH � 6
Z
H

@�@
2
!g (x;�; �) dH

= 2@3p

Z
H

g (x;�; �) dH

where again x = y + tv: Finally

@p

Z
H(p;!)

(Vg)!�;!� dH =
1

2

Z 2�

0

@�@�@
3
;!Xg (y; v) d�:

This together with (7) implies (6). �
Proof of Theorem. For arbitrary �; �; 
; � 2 E and plane H � E; we denote

RH (�; �; 
; �) = @p

Z
H

(Vg)��;
� dH; (9)

where the right hand side is known from Lemma 2 and equation (5) follows from (6). Check
equation

RH (�; �; 
; �) = RH (h�; !i�; !; h�; !i 
; !)� RH (h�; !i�; !; h�; !i 
; !) (10)

� RH (h�; !i�; !; h
; !i �; !) + RH (h�; !i�; !; h
; !i �; !) ;

where ! is a unit normal vector to H: The left and the right hand sides are skew symmetric in
(�; �) and symmetric in pairs (�; �) and (
; �) : If � and � are parallel to H; then the right hand
side of (10) vanish. The same is true for the left hand side since of (2). The same is true if 
 and
� are parallel to H: In the general case we write � = �0 + a!; � = �0 + b! where �0; �0 are parallel
to H and a; b 2 R: Then we have

RH (�; �; 
; �) = RH (�
0; �0; 
; �) + aRH (!; �

0; 
; �) + bRH (�
0; !; 
; �) ;

where the �rst term vanishes. A similar equation holds for the right hand side of (10). Finally, it is
su¢ cient to consider the case � = 
 = ! and � and � are parallel to H: Then all terms of the right
hand side of (10) vanish except the last one which coincides with the left hand side. Therefore
(10) holds for all �; �; 
; �: Finally, we recover the Saint-Venant tensor at x 2 E by H. Lorentz�s
formula

(Vg)��;
� (x) = �
1

8�2

Z
!2S2


 @2p

Z
H(p;!)

(Vg)��;
�

�����
p=h!;xi

dH

and substitute (9), where the left hand side is already determined by means of (6). �
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4 A gauge �eld

Let " be an unknown 2-tensor �eld with compact support in E such that the Saint-Venant tensor
V" is known. We want to construct a �eld g with compact support such that Vg = V". We call g
a gauge of ": The �eld " need not to be smooth e.g. it can has discontinuity on the boundary of
the specimen. In this case the components of V" are singular (generalized) functions in E:

Theorem 3 For any 2-tensor �eld " supported in convex compact K in E and a neighborhood U
of K; there exists a gauge �eld e supported in U that ful�ls equation Vg = V" and can be explicitly
constructed from data of V":

Proof. Set h = fhijg + V" and write the Saint-Venant system (2) for a gauge �eld g = fgijg :

@22g11 � 2@12g12 + @11g22 = h33;
@33g11 � 2@13g13 + @11g33 = h22;

�@23g11 + @12g13 + @13g12 � @11g23 = h23; (11)

@33g22 � 2@23g23 + @22g33 = h11;
�@12g33 + @13g23 + @23g13 � @33g12 = h12;
�@13g22 + @12g23 + @23g12 � @22g13 = h13;

where @ij = @i@j ; i; j = 1; 2; 3 and gij = (V")ki;kj .
Step 1. Find functions gij ; i; j = 1; 2 such that

h33 = @22g11 � 2@12g12 + @11g22: (12)

Equations (2) mean that (11) hold with gij replaced by "ij : In particular the �rst line of (11) with
g replaced by " implies equationsZ a2

0

Z a1

0

h33 (x) dx
1dx2 =

Z Z
x1h33 (x) dx

1dx2 =

Z Z
x2h33 (x) dx

1dx2 = 0 (13)

which hold for any x3 2 R; since all "ij have compact support. Suppose for simplicity that
K =

�
0 � xi � ai; i = 1; 2; 3

	
and take a smooth function e0 with compact support in [0; a1] such

that
R
e0dt = 1: The function

f0
�
x1; x2; x3

�
= h33

�
x1; x2; x3

�
� e0

�
x1
� Z a1

0

h33
�
t; x2; x3

�
dt

ful�ls Z a1

0

f0
�
t; x2; x3

�
dt = 0 (14)

for any x2; x3: Functions

f1 (x) =

Z x1

0

f0
�
t; x2; x3

�
dt; f2 (x) = e0

�
x1
� Z x2

0

Z a1

0

h33
�
t; s; x3

�
dtds

satisfy h33 = @1f1 + @2f2; and are supported in K since of (14) and of the �rst equation (13),
respectively. By (13) Z

R2
fidx

1dx2 =

Z
R2
xih33dx

1dx2 = 0; i = 1; 2:
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By repeating the previous arguments we can write fi = @1f1i + @2f2i; i = 1; 2 with some functions
fji supported in K: Equation (12) holds with g11 = f11; g22 = f22 and g12 = �1=2 (f12 + f21) :
Step 2. By the same method and the second line of (11) we �nd a solution (g011; g

0
13; g

0
33) of the

equation
h22 = @3@3g

0
11 � 2@1@3g013 + @1@1g033 (15)

supported in K: Note that g011 need not to coincide with g11:
Step 3. Check that Z a1

0

�
g011
�
t; x2; x3

�
� g11

�
t; x2; x3

��
dt = 0: (16)

By (12) and (15) we have

@22 (g11 � "11)� 2@12 (g12 � "12) + @11 (g22 � "22) = 0; (17)

@33 (g
0
11 � "11)� 2@13 (g013 � "13) + @11 (g033 � "33) = 0; (18)

and (17) implies

@22

Z a1

0

�
g11
�
t; x2; x3

�
� "11

�
t; x2; x3

��
dt = 0:

The equation holds with the derivative @22 omitted, since g11 � "11 has compact support. By (18)
and similar arguments we obtainZ a1

0

�
g011
�
t; x2; x3

�
� "11

�
t; x2; x3

��
dt = 0:

Subtracting the previous equation from the former one we get (16). Therefore, function

d (x) =

Z x1

0

�
g011
�
t; x2; x3

�
� g11

�
t; x2; x3

��
dt

is supported in K and satis�es @1d = g011 � g11: Set g13 = g013 � 1=2@3d; g33 = g033 and have
h22 = @33g11 � 2@13g13 + @11g33, since of (15).
Step 4. Now we only need to �nd a component g23 that ful�ls the third line of (11). Consider

the 2-�eld ~g = fgij ; (i; j) 6= (2; 3)g ; where g23 = 0 and other components gij are found in Steps
1-3. The di¤erential operator

(Zr)i =
3X
j=1

@jrji

satis�es ZV = 0 which implies Zr = 0 for r = V~g �V". This system is reduced to

@1r11 + @2r12 + @3r13 = 0; (19)

@1r21 + @3r23 = 0;

@1r31 + @2r32 = 0

because of r33 = r22 = 0: It follows that 2@23r23 = �@11r11; hence

@23

Z a1

0

r23 (x) dx
1 = @23

Z a1

0

r23 (x)x
1dx1 = 0

for any x2 and x3: The same is true with the derivative @23 omitted. Hence we can �nd a function
g23 supported in K that satis�es @11g23 = �r23 by double integration in x1. Set g = ~g+ g�; where
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g� is the tensor with only one non zero component equal to g23: Tensor r = Vg � V" ful�ls (19)
where r33 = r22 = r23 = 0: This implies @1r21 = @1r31 = @11r11 = 0 and r11 = r21 = r31 = 0; since
r has compact support. This means that the last three equations (11) are ful�lled and Vg = V": For
an arbitrary convex compact K; a proof follows from [7] §7.8. �

Proposition 4 For any 2-tensor �eld e with compact support in E such that Ve = 0; there exists a
unique displacement �eld ' that ful�ls equation D' = e such that ' = 0 in the unbounded connected
component of Ensupp ":

Proof. We are going to solve system (11) with rij = 0: By the �rst equation, we have

@22

Z
e11
�
t; x2; x3

�
dt = �

Z
@12e12

�
t; x2; x3

�
dt+

Z
@11e22

�
t; x2; x3

�
dt = 0

which implies
R
e11
�
t; x2; x3

�
dt = 0 for any x2 and x3; since this function has compact support.

It follows that the function

'1
�
x1; x2; x3

�
=

Z x1

�1
e11
�
t; x2; x3

�
dt

has compact support and ful�ls @1'1 = e11: In the similar way, we �nd solutions 'i of @i'i = eii;
i = 2; 3 with compact support. Set ' =

P
'idx

i and e0 = e � D': This tensor �eld satis�es (11)
with h = 0; g = e0 and e0ii = 0 for i = 1; 2; 3: Equations (11) yield e0 = 0; since e0 has compact
support. Thus D' = e. Operator D is elliptic and has constant coe¢ cients. Therefore the �eld '
is analytic in Ensupp ": The �eld ' vanishes in the unbounded connected component of this set,
since ' has compact support. �

5 Recovering of a displacement �eld

The method of integrated polarization tomography is based on measurement of the motion of the
polarization ellipse of propagating light. For a small stress tensor �; this transformation is related
to the line integral of the traceless normal part of � [1]. Given a 2-tensor �eld " and a vector v;
the traceless normal part of " is the 2-tensor Qv" de�ned in any plane P orthogonal to v :

Qv" jP = " jP �
1

2
tr (" jP ) i jP ;

where i =
�
du1

�2
+
�
du2

�2
+
�
du3

�2
: We have

Qv" =
1

2
("11 � "22)

�
dx1

�2
+ "12dx

1 � dx2 + 1
2
("22 � "11)

�
dx2

�2
for any euclidean coordinate system

�
x1; x2; x3

�
such that v = (0; 0; 1) : The traceless normal ray

integral of " is 2-tensor

Tv" (y;u;w) =

Z 1

0

Qv" (y + tv;u;w) dt; u; w 2 P

de�ned for any v 2 S2 in a plane P orthogonal v:

8



Theorem 5 Let K be a compact convex set E and � � EnK be a piecewise smooth curve such that
any plane H that has a common point with K meets � transversely at a point y: For any 2-tensor
" with support in K satisfying V" = 0; the corresponding displacement �eld ' can be reconstructed
from data of the second derivatives of the ray integrals Tv" (y) for y 2 �, v 2 S2:

Proof. Let H = H (p; !) and y 2 � \H be as in the assumption. Choose a coordinate system�
x1; x2; x3

�
in E such that ! = (1; 0; 0) : For a ray R � H with a direction vector v = v (�) =

(0; cos �; sin �) ; 0 � � < 2�; the vectors ! and u = (0;� sin �; cos �) form an orthogonal basis in
any plane P orthogonal to v: Tensor Tv" (y) is known for y 2 � and v 2 H (0; !). It has two
independent components in this basis:

Tv" (y;!; !) +
1

2

Z 1

0

("!! (y + tv)� "uu (y + tv)) dt, Tv" (y;!; u) +
Z 1

0

"!u (y + tv) dt:

By Proposition 4 we have " = D': Calculate the integrals

I1 (y; p; !) +
Z 2�

0

@2;!Tv(�)" (y; !; !) d�;

I2 (y; p; !) +
Z 2�

0

@2;!Tv(�)" (y; !; u) d�

in terms of components "ij of " and components 'i of ': We have

"!u = � sin �"12 + cos �"13
= @! (� sin �'2 + cos �'3) + (� sin �@2 + cos �@3)'1Z 1

0

"!u (y + tv) dt = @!

Z 1

0

(� sin �'2 + cos �'3) dt+
Z 1

0

(� sin �@2 + cos �@3)'1dt;

@2;!

Z 1

0

"!u (y + tv) dt = @
3
!

Z 1

0

(�t sin �'2 + t cos �'3) tdt+ @2!
Z 1

0

(�t sin �@2 + t cos �@3)'1tdt

I2 (y; p; !) = @
3
!

Z 2�

0

Z 1

0

(�t sin �'2 + t cos �'3) tdtd�

+ @2!

Z 2�

0

Z 1

0

(�t sin �@2 + t cos �@3)'1tdtd�

= @3p

Z
H

�
�z3'2 (x) + z2'3 (x)

�
dH + @2p

Z
H

�
z2@3 � z3@2

�
'1 (x) dH;

where H = H (p; !) ; x = y+ tv and zj = xj � yj ; j = 2; 3: The last integral vanishes after partial
integration, hence

I2 (y; p; !) = @
3
p

Z
H

�
�z3'2 + z2'3

�
dH

which implies

@

@y3
I2 (y; p; !) = @

3
p

Z
H

'2dH;
@

@y2
I2 (y; p; !) = �@3p

Z
H(p;!)

'3dH:

Integrating in p we get

@

@y3
J2 (p; !) = @

2
p

Z
H(p;!)

'2dH;
@

@y2
J2 (p; !) = �@2p

Z
H(p;!)

'3dH;
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where

J2 (p; !) +
Z p

�1
I2 (y; q; !) dq; (20)

since all the functions vanish for p < p0 for some constant p0 depending only on supp ": Similarly

2Tv(�)" (y;!; !) =

Z 1

0

�
@1'1 �

�
sin2 �@2'2 � sin � cos � (@2'3 + @3'2) + cos2 �@3'3

��
dt;

2I1 (y; p; !) = @
3
p

Z h�
z2
�2
+
�
z3
�2i

'1dH

� @2p
Z h�

z3
�2
@2'2 � z2z3 (@2'3 + @3'2) +

�
z2
�2
@3'3

i
dH:

The �rst integral is quadratic in y: By partial integration the second integral is reduced to the
quantity

@3p

Z
H(p;!)

�
z2'2 + z

3'3
�
dH

which is linear in y: Therefore,

@2

(@y2)
2 I1 (y; p; !) =

@2

(@y3)
2 I1 (y; p; !) = @

3
p

Z
H(p;!)

'1dH

which implies

J1 (p; !) + @2p
Z
H(p;!)

'1dH =

Z p

�1

@2

(@y2)
2 I1 (y; q; !) dq: (21)

Now we write the result in the covariant form introducing the vector �eld J (p; !) de�ned in R�S2
such that for any vector e 2 E

hJ (p; !) ; ei = he; !i J1 (p; !) + [!; e; @=@y] J2 (p; !) :

The functions J1; J2 are known from (21) and (20). Finally we apply Lorentz�s formula and calculate
the displacement term

' (x) = � 1

8�2

Z
S2
J (hx; !i ; !) 


which completes the proof. �

Corollary 6 If the specimen is homogeneous and coaxial, then the displacement ' can be recon-
structed from traceless normal line integrals of the stress tensor �:

Proof. The strain and stress tensors are related by the constitutive equation � = c", where c
is the tensor of elastic moduli that expresses Hooke�s law. For a homogeneous coaxial solid, this
equation is as follows

�ij = ��ijtr"+ 2�"ij ; tr" = "11 + "22 + "33; (22)

where � and � are positive Lamé�s constants. We have

T" (!; !) =
1

�+ 2�
T� (!; !) ; T" (!; u) =

1

2�
T� (!; u) ;

hence the integrals T" are known from data of T�. �
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If Lamé�s parameters are arbitrary C1 functions, the method of Theorem 5 leads to the integral
equation of Fredholm type

'+G' = L (J) ;

where L is the operator in the right hand side of (9) and G is a bounded operator L2 (K)! H1 (K) ;
hence a compact operator in L2 (K) :

6 Full reconstruction of a strain tensor

Theorem 7 Let �i; i = 1; 2 be piecewise smooth curves in E and K be a compact set in En�1[�2
such that for any point x 2 K any plane H through x meets each �i transversely at a point. Any
2-tensor �eld " supported in the compact K can be reconstructed from
(I) data of the axial ray integrals X" with source points y 2 �1 and its second derivatives with
respect to y; and
(II) data of ray integrals T" of the traceless normal part of " and its second derivatives for rays
with sources points on a curve �2.

Proof. The algorithm is as follows:
Step 1. Calculate V" from data of the axial ray integrals X" as in Sec. 3.
Step 2. Find a gauge �eld g with compact support in E as in Sec. 4.
Step 3. Set e = "� g and have Ve = V"�Vg = 0: By Proposition 4 we have e = D' in E for a

displacement �eld ' with compact support. Determine the �eld ' from knowledge ofTe = T"�Tg
by the algorithm of Sec. 5. The reconstruction reads " = g +D': �
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