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Abstract
A class of photoacoustic acquisition geometries in n is considered such that
the spherical mean transform admits an exact filtered back projection recon-
struction formula. The reconstruction is interpreted as a time reversion mirror
that reproduces exactly an arbitrary source distribution in the cavity. A series
of examples of non-uniqueness of the inverse potential problem is constructed
based on the same geometrical technique.

Keywords: photoacoustic tomography, time reversal, inverse potential
problem

1. Introduction

Reconstruction of a function from its spherical means is a mathematical tool for photo- and
thermo-acoustic tomography. This method is also applied in geophysics (travel time inver-
sion). Typically, the integral data is available for all spheres centered at a set ⊂Z n (e.g. an
array of transducers) and an unknown function is supported by an open set ⊂ ⧹H Zn .
Closed reconstruction formulae of filtered back projection (FBP) types are known for a few
types of central sets Z. We state here that such a reconstruction is possible for a class of
algebraic central sets Z called oscillatory § 2.

For general information on the photoacoustic and other hybrid tomographic methods, we
refer to surveys [12] and [11].

Next, we show that the reconstructions can be interpreted as application of a universal
time reversal method for the wave equation in the sense of Fink [8]. A signal is recorded by an
array of transducers (mirror), time-reversed and retransmitted into the medium. The
retransmitted signal propagates back through the same medium and refocuses on the source.
The time reversal method is an effective tool in acoustical imaging even if the array of
transducers is aside of a radiation source and no data from the region of interest is available,
see [8].

We show that for a free space and any oscillatory array set Z, the time reversal is a
perfect mirror providing the exact reconstruction of any source distribution supported by the
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cavity H § 5. The cavity can be open; the method works for a paraboloid, a half-space and a
two sheet hyperboloid giving an approximate reconstruction with a finite array of transducers.
In spite of the time reversal method appearing as quite natural in our problem, it only works
accurately for a very special class of center sets Z.

The method of oscillatory geometry can be applied also for a generalization of Newtonʼs
famous attraction theorem (Principia, 1687). This theorem states that a mass uniformly dis-
tributed over a thin sphere exerts zero gravitation field inside (levitation). This is an example
of the non-uniqueness of the interior inverse potential problem. We show that there are many
sets Z in 3 supporting a mass distribution which generate levitation in an open set § § 7–9.
See [22] and [10] for surveys of inverse problems of the potential theory.

2. Oscillatory sets

Definition. Let p be a real polynomial in n of degree m with the zero set Z. We call p and Z
oscillatory with respect to a point ∈ ⧹a Z,n if p has m simple zeros in L for almost any line

⊂L n through a. The point a will be called hyperbolic point of p and Z. A point ∈x Z is
called regular if ≠p xd ( ) 0.

Theorem 1. Let p be a polynomial in ,n >n 1 with a compact oscillatory zero set Z with
respect to a point a. We have ∪ ∪= μZ Z ... Z ,1 where μ =μ mZ ,..., Z , 21 are ovals
(homeomorphic images of a sphere). They are nested in the sense that a set of regular points
of Zi is contained in the interior of +Zi 1 for μ=i 1 ,..., . Moreover, = ∂Z H1 where H is the
set of all hyperbolic points. It is a convex component of ⧹Z.n

Proof. Let a be a hyperbolic point of p and S be a sphere in n with the center at the origin.
For any ω ∈ S we numerate zero points of p by ω ω μ ω= + =x a t k( ) , 1 ,..., ( )k k counting
with multiplicity in such a way that:

⩽ … ⩽ ⩽ < < ⩽ ⩽ … ⩽σ ω τ ω− − −t t t t t t0 . (1)( ) 2 1 1 2 ( )

By the classical Rouche theorem for an arbitrary disc ⊂D and a holomorphic function f in
D that is continuous in the closed disc, the number of zeros of f in D is equal to the number of
zeros of +f h provided h is holomorphic in D, continuous up to the boundary and satisfies:

<
∂ ∂

h fmax min .
D D

Fix an arbitrary ω ∈ S0 and arbitrary real <u v such that ω+ ≠p a t( ) 00 for =t u v, . The
holomorphic function ω= +f t p a t( ) ( )0 does not vanish in the circle C such that segment
u v[ , ] is a diameter since p is oscillatory and f t( ) has only real zeros. By the Rouche theorem
the number of zeros ω=t t ( )k of ω+p a t( ) such that ω⩽ ⩽u t v( )k is constant for all ω in a
neighborhood U of ω0 since the ω+p a t( ) has no complex zeros. It follows that the number
of zeros of ω+p a t( ) is equal to m for all ω ∈ S since Z is compact. This implies
σ ω τ ω+ = m( ) ( ) for any ω. Therefore we have σ τ μ= = ≑ m 2 and ω ω= −−t t( ) ( ),k k

μ=k 1 ,..., for ω ∈ S since the sphere S is connected. For any μ=k 1 ,..., , the function
ω ω ω= +x a t( ) ( )k k is defined and continuous for ω ∈ S, hence

ω ω= = ∈{ }x xZ ( ), Sk k is an oval. We have ∪= μZ Zk1 and the variety ∩Z Zk j has
dimension < −n 1 for any ≠j k . Therefore the sets Zk are nested and a belongs to the
interior H of the oval Z .1

Check that any ∈b H is a hyperbolic point. Let reg Z be the set of all regular points of
Z. The set = ⧹sing Z Z reg Z is a closed algebraic subset of Z of dimension < −n 1.
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Consider the central projection π →: Z S,b where π = − −x x b x b( ) ( )b and S is the unit
−n 1 sphere. It is proper, since Z is compact and ∉b Z. The image π (sing Z)b is a closed

algebraic set of dimension < −n 1. If ω π∈ ⧹S (sing Z),b the line
ω ω= = + ∈L b x b t t( , ) { , } does not meet sing Z and intercepts each closed hypersur-

face μZ ,..., Z1 at least two times. The total number of intersections is μ⩾ = m2 . It is equal to
m, since p is a polynomial of degree m. This shows that b is a hyperbolic point. It follows that
H is the set of all hyperbolic points.

Check that H is convex. If it is not the case, then a sequence of lines exists →L Lj such
that L contains a concave point ∈ ∂b H but Lj does not meet the set ⧹U Z for a neighborhood
U of b. By the Rouche theorem the number of zeros of p in ⧹L U is the same as in ⧹L U,j

which is equal to m. The point ∈b Z makes the number of zeros of p in L larger m, which is
impossible. □

Definition.We call a hyperbolic cavity of an oscillatory set Z any maximal connected set
H of points a such that Z is oscillatory with respect to a. By theorem 1 there is only one
hyperbolic cavity, if the zero set is compact. The zero set of an oscillatory polynomial p is
compact if and only if p is elliptic, that is the principal part pm does not vanish in ⧹0.n

3. Photoacoustic inversion for oscillatory acquisition geometry

Consider the spherical mean transform in an Euclidean space En with a central set ⊂ EZ n.

∫ξ ξ= ∈ >
ξ− =

f r f x S rR ( , ) ( )d , Z, 0
x r

Z

Theorem 2. Let p be a polynomial in En with a compact regular oscillatory zero set Z and
H be the hyperbolic cavity. An arbitrary function f in En with support in H can be
reconstructed from its spherical means by

∫ ξ ξ= − ∂
∂ ξ−

−

= −
⎜ ⎟⎛
⎝

⎞
⎠f x

p x
r r

f r
r p

( )
( )

j

1 R ( , ) d
d

(2)
n

n

r x
1 Z

1

for odd n, and

∫ ∫ ξ
ξ ξ= −

− −
∂
∂

∞ −
⎜ ⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟f x

p x r

x r r r
f r
r p

( )
2 ( )
j

d 1 R ( , ) d
d

(3)
n

n

Z 0

2

2 2

1

for even n, where Z is oriented by the outward conormal and ω ξ≑ pd d is a differential form
in En such that ω ξ ξ ξ∧ = = ∧ ∧pd d d ... d .n1

A proof is given in § 6.

4. Examples

Agranovski and Quinto [1] studied the structure of injectivity sets for the circle mean
transform in a plane. They showed that a plane set is injectivity set except for special unions
of lines and points. On the other hand, a closed form reconstruction is only possible for very
special injectivity sets.
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Example 1. Half-space. A hyperplane Z is oscillatory with two hyperbolic cavities .
Such acquisition geometry appears in geophysics. Reconstructions (2) and (3) for this case
look different from that of [5] and [2].

2. Ellipsoids and paraboloids. Any ellipsoid, elliptic paraboloid, elliptic and parabolic
cylinder is oscillatory with only one hyperbolic cavity: see figure 1 A two sheet hyperboloid
is oscillatory with two hyperbolic cavities. A slab has three hyperbolic cavities.

One sheet hyperboloid and parabolic hyperboloid Z are not oscillatory since the curva-
ture form of Z is not positively or negatively determined.

Reconstructions of FBP types for case Z as a sphere were conducted by Finch et al in
[6, 7]. The authorsʼ method is based on the wave operator. Xu and Wang [21] obtained
explicit reconstructions when Z was a sphere, a circular cylinder and a slab. Kunyansky [13]
applied an approach based on the Helmholtz operator. Recently, a reconstruction of an FBP
type was done in [16] for ellipsoids Z in 3D, and in [18] in the form (2–3) for arbitrary
dimension, see also [9]. Note that the reconstruction formulas obtained in the above papers
are different from [18]. Kunyansky [14] also found reconstructions for some polygonal curves
and polyhedral surfaces as center sets. The case of variable velocity is addressed in [19].

3. Half-ellipsoid. Let p2 be an elliptic second order polynomial. The set =p 03 where
=p x p3 1 2 is the union of an ellipsoid and a hyperplane. If the set = < >p x xH { ( ) 0, 0}2 1 is

not empty it is a hyperbolic cavity for p3. By proposition 9 for any ε > 0, there exists a
polynomial p̃3 with a regular oscillatory zero set Z̃ such that ε− <p p̃3 3 in ∪Z Z̃. The set

Z̃ consists of an oval = ∂Z H1 and an unbounded component Z2: see figure 2.
Note that contribution of points ξ∈ Z2 to (3) decreases fast as ξ → ∞.

Figure 1. Hyperbolic cavity of ellipsoids and elliptic paraboloids

Figure 2. Hyperbolic cavity of a curve of degree three
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4. The zero set Z of the polynomial = + − + + +p x y x y x y( ) 12 ( ) 72 2 3 2 2 2 2 2

+ −x y30( ) 202 2 is compact since the principal part of p is the elliptic polynomial
+( )x y .2 2 3 It is shown in figure 3 drawn by Maple. It is clear that Z is regular and oscillatory.

5. Time reversal structure

Let En be an Euclidean space; consider the Cauchy problem for the wave equation in the
space-time × En

Δ∂
∂

− =

= ′ =

⎛
⎝⎜

⎞
⎠⎟t
u

u x u x f x

0

(0, ) 0, (0, ) ( ). (4)t

2

2

for a function f in E .n Let +E t x( , )n 1 be the forward propagator for (4).

Figure 3. Oscillatory zero set of degree six

Figure 4. Geometry of the time reversal
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Theorem 3. Formulae (2) and (3) are equivalent to the time reversal method for (4) acting
in the following steps:

(i) transmission (forward propagation) of a function f supported inH to the mirror manifold
× Z:

∫ξ ξ ξ↦ = − ∈+f u t E t x f x x( , ) ( , ) ( )d , Z,n
H

1

(ii) filtration:

= ≑ − ∂
∂

∂
∂v u

t t t
uF

4
,

(iii) time reversion and retransmission:

∫ ∫ ξ ξ ξ= − −
∞

+g x E t x v t t
p

( ) ( , ) ( , )d
d
d

,n
Z 0

1

(iv) reconstruction:

= −f x p x g x( ) ( ) ( ).

See figure 4.
Remark 1. In the general setting steps (i–iv) correspond to the conception of time

reversal due to Fink [8]. The system of transducers is assumed transparent for the wave field
and no data in × H is used for the reconstruction.

Remark 2. The filtration operator F is a positive self-adjoint differential operator in the
Hilbert space +L ( ).2 We can replace the volume form ξ pd d by ξq pd d where q is an
arbitrary polynomial of degree ⩽ −m 2 preserving equations (2) and (3). If q is a strict
separator of Z (see §7), the form q x pd d is a volume form in Z. Then the retransmitting
operator E* is adjoint to the transmitting operator E: → ×L L(H) ( Z)2 2 where the space

× Z is endowed with the volume form q x pd d . The time reversal operator T can be written
in the self-adjoint form

= p pT E*FE .1 2 1 2

Proof. For odd = +n m2 1, the forward propagator is

π π
θ δ= ∂

∂
−+

−⎛
⎝⎜

⎞
⎠⎟ ( )E t x

t
t t x( , )

1
2

( ) .n

m

1 2

1
2 2

The solution of (4) equals:

∫ξ π π π π
ξ= ∂

∂
= ∂

∂ξ

−

− =

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟u t

t t
f S

t

f t
t

( , )
1
4

1
d

1
4

R ( , )m

x t

m

2

1

2

1
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and by (2):

∫

∫

∫ ∫
∫ ∫
∫ ∫

ξ ξ

π
ξ

π
ξ

π
ξ

π
δ ξ ξ

ξ ξ ξ

ξ ξ ξ

− = ∂
∂

= − ∂
∂

∂
∂

∂
∂

= − ∂
∂

− − ∂
∂

∂
∂

= − ∗ −

= − − ∗

ξ

ξ

−

−

−

= −

−
−

= −

∞ −

+

+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

( )

( )

f x
p x p t

f t
t

p t t t t t
u t

p t
t x

t t t
u t t

p
E t x v t t

p
E t x v t t

( )
( )

2

j

d
d

R ( , )

( 1)
1
2

d
d

1 1
( , )

1
2

d
d

4
( , )d

d
d

( , ) ( , ) d

d
d

( , ) ( , ) d

n

n

n

t x

n
m

t x

m

n

n

1

1 Z 2

1

( 1) 2

Z 2

1

Z 0 2

1
2 2

Z
1

Z
1

is the retransmission of =v uF .
For even =n m2 , solving the Cauchy problem by means of the propagator:

π π
θ= ∂

∂
−

−
+

−⎛
⎝⎜

⎞
⎠⎟ ( )

E t x
t

t x

t x
( , )

1
2

( )
(5)n

m

1 2

1

2 2 1 2

we obtain:

∫ξ π
ρ

τ ρ ρ ρ ξ= ∗ =
−

∂
∂+

−∞

∞

+

−⎛
⎝⎜

⎞
⎠⎟u t E t f f( , ) ( , ·) ( · )

1
4

d

( )
S ( , ), (6)n m

m

1 1 2

1

where τ = t ,2 and ξ =f rR ( , ) 0 for <r 0. Inverting this equation by Abelʼs method
we find

∫π ρ ρ ξ ρ ξ ρ
ξ

ρ τ
τ∂

∂ = =
−ρ

−

+

⎛
⎝⎜

⎞
⎠⎟ f D f

u t
S ( , ) S ( , ) 4

d
d

( , )

( )
d

m 1

1 2

We write (3) in the form

∫ ∫

∫ ∫
π

ξ
ξ

ρ ξ

π
ξ ρ

η ρ ρ ρ ξ

− = −
− −

∂
∂

= − −
∂
∂

∞ −

∞ −

⎜ ⎟
⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

f x
p x p

r

x r r r
f

p
f

( )
( )

( 1)
2

(2 )
d
d

d 1
S ( , )

( 1)
1 d

d
d

S ( , ) (7)

m
n

n

m
n

n

Z 0

2

2 2

1

Z 0

1

where ρ ξ ξ ρ= =f f r r rS ( , ) R ( , ) , 2 and η ξ= −x 2. Integrate by parts in (6) and apply
lemma 4 (below)

∫ ρ
ξ ρ ρ ρ ξ

− −
∂
∂−∞

∞ −⎛
⎝⎜

⎞
⎠⎟x

f
d

S ( , )
n

2

1
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∫

∫ ∫

∫ ∫

∫

∫

∫

∫

∫

ρ
η ρ ρ ρ ρ ξ

π ρ
η ρ ρ

ξ
ρ τ

τ

π η ξ τ ρ
η ρ ρ τ

π η
ξ τ

τ η

π τ ξ τ
τ

τ η

π ξ τ τ σ

π ξ τ ξ

π ξ ξ

= −
∂
∂

∂
∂

= −
∂
∂ −

= ∂
∂ − −

= ∂
∂ −

= − ∂
∂

∂
∂ −

= − ∂
∂

∂
∂

∂
∂ −

= − ∂
∂ − −

= − − −

−

−
+

+

−
+

+
+

+

−
−

+

−
−

+

− −
−

− +

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

f

u t

u t

u t

u t

t t t
u t

t

v t
t

t x

v t E t x t

d
S ( , )

4
d ( , )

( )
d

4 ( , )d
d 1

( )

4
( , )d

( )

( 1) 4 ( , )
d

( )

( 1)
2

( , )
d

( )

( 1) 2 ( , )
d

( 1) ( , ) ( , )d .

m m

m
m

m
m

m
m

m m
m

m m
m

m m
m

m n
n

1

1
1

1 2

1
1

1 2

1

1 2

1
2 1

1 2

1
1

1 2

1 1
1

2 2 1 2

1
1

This together with (7) gives

∫ ξ ξ− = − − −+
f x
p x

v t E t x t
( )
( )

( , ) ( , )d ,n 1

where again

ξ ξ= − ∂
∂

∂
∂v t

t t t
u t( , )

4
( , ).

This completes the proof. □

Lemma 4. We have

∫ ρ
σ ρ ρ τ

π
τ σ− −

=
−−∞

∞

+ +

d

( )( ) ( )
(8)

1 2 1 2

where ≐ ±±t tmax{ , 0}.

Proof. The integral is the convolution

∫ ρ
σ ρ ρ τ

ρ ρ σ τ
− −

= ∗ −
−∞

∞

+

−
+
−( )d

( )( )
( )

1 2
1 1 2

of distributions ρ ρ− d1 and ρ ρ+
− d .1 2 The Fourier transform of the convolution is equal to the

product ρ ρ ρ ρ∗ =−
+
− −

+
−F F F( ) ( ) ( )1 1 2 1 1 2 where
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ρ π ρ π

ρ ρ π π π ρ

= + =

= + =
+
− −

+
− −

−
− −

−
+
− − −

+
−

−
−

−
−

( ) ( ) ( )
( ) ( ) ( ) ( )

F i r i r F i r

F F i r i r F

(2 ) , sgn

(2 )

1 2 1 2 1 2 1 2 1 2 1 2 1

1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

This equation agrees with (8). □

6. Proof of the reconstruction

Check that the generating function Φ λ ξ θ ξ λ θ ξ= − = −x x x( ; , ) ( , ) , | | 2 defined in
Σ Σ× = ×H , Z satisfies conditions (i,ii,iii) of theorem 3.1 of [18] . Condition (i) is

easy to verify. To prove (ii) we suppose that ≠y x are conjugate points in H, which means

θ ξ θ ξ θ ξ θ ξ= =ξ ξx y x y( , ) ( , ), d ( , ) d ( , ) (9)

for some ξ ∈ Z. The first equation (9) implies that ξ ξ− = −x y . It follows that the line L
through = +s x y1 2( ) and ξ is orthogonal to −x y. By the second condition (9) we have

ξ− =x y, d 0, hence vector −x y is orthogonal to Z at ξ. Therefore L is tangent to Z at ξ
which is impossible, since H is convex and no line through ∈s H is tangent to Z. To check
(iii) we consider an integral

∫Θ ω
φ ξ= −x y
x y i

( , )
( ( , ; ) 0)

,n nZ

Z

where

φ ξ θ ξ θ ξ ξ ξ= − = − + − = − = −x y y x x y y x z s z x y( , ; ) ( , ) ( , ) 2 , , , 2( ).2 2

Lemma 5. We have Θ =i x yRe ( , ) 0n
n for arbitrary ≠y x.

Proof. Let S be the unit sphere in E .n We can write = ′ + ωp p t pd d dt by means of spherical
coordinates ξ ω ω= + ∈ ∈a t t, , S. This yields

ξ Ω Ω ξ Ω= ∧ = ′ ∧ = ′
− −

−
t t t

p
p p

t
p

d d
d

,
d
d

, (10)n n

t

n

t

1 1
1

where Ω is the volume form in the sphere S. We move the origin to the point ∈s H and have
φ ξ ξ= z( ) , . Let < < < < < <μ μ− −t t t t.. 0 ...1 1 be all zeros of ω+p a t( ) as in theorem
1. For even n, we have

∫ ∫Θ φ
ξ

φ ω φ ω
ξ= = +

ε→ + + −

⎡
⎣⎢

⎤
⎦⎥x y

p t t p
2Re ( , ) 2

1 d
d

lim
1

( )
1

( )
d
d

, (11)n n n nZ 0 Z

where ω ω ε= ±± −i z z,2 ε > 0 is a small number. We have
φ ω ω ω ε= = ±± ±( )t tz tz i t, , sgn and

φ ω φ ω ω ω
+ = +

+ − + −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t t t z z

1
( )

1
( )

1 1

,

1
,n n n n n
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for any ≠t 0. Taking into account (10), we integrate over Z and get:

∫ ∑Θ ω ω ω
Ω= ′ + +

ε μ

μ

→ =− + −+

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥x y

t p a t z z
2Re ( , ) lim

1
( )

1

,

1
,

, (12)n
k k t k

n n0 S

where +S is an arbitrary hemisphere. The sum in (12) is equal to the sum of residues
ρ ωtres ( , )tk of the form ρ ω =t( , ) ω+t tp a td ( ). Integrate this form along a circle of radius

ω> μR tmax ( )S and apply the Residue theorem:

∫ ∑ ∑π ρ ω ρ ω ρ ω ω
ρ ω

= + = + ′
= − =

μ

μ

μ

μ

= =− =−

∞

i
t t t

p a t p t

t

1
2

( , ) res ( , ) res ( , )
1
( )

1
( )

res ( , ) 0.

t R
k

t
k k t k

0 k

Here ω μ μ∈ = −t kZ , ,...,k k and the residue at infinity vanishes since ρ ω = −t O t( , ) ( ).2

Therefore

∑ ω′ + = −
μ

μ

=− t p a t p a
1

( )
1
( )

(13)
k k t k

and we come up with the equation:

∫
∫

Θ
ω ω

Ω

Ω
ω

= − +

= − −

ε→ + −+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x y

p a z z

p a z i

2Re ( , )
1
( )

lim
1

,

1
,

2
( )

Re
( , 0)

.

n n n

n

0 S

S

The right hand side vanishes by [18] proposition 4.3 hence Θ =x yRe ( , ) 0.n

For odd n, we argue in a similar way:

∫
∫

∑Θ ω ω ω
Ω

Ω
ω

= ′ + −

= − −

ε μ

μ

→ =− − ++

−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥i x y

t p a t z z

i
p a z i

2 Im ( , ) lim
1

( )
1

,
1

,

2
( )

Im
( , 0)

. (14)

n
k k k

n n

n

0 S

Sn 1

The right hand side vanishes according to [18] proposition 4.3. This together with (14)
implies vanishing of Θ x yIm ( , )n and completes the proof of lemma 5. □

Theorem 2 now follows from [18] theorem 3.1 applied for the generating function Φ as above
and for the space Σ = × Z endowed with the form ξ pd d . We change the variable λ = r2

and take into account that θ ξ= − =x r2 2 and = −f r x r f r xM ( , ) (2 ) R ( , )2 1 in loc. cit.
To complete the proof we only need to calculate the dominator

∫ ξ
ξ
ξ= −−

D x
x p

( )
1

S

1 d
d ( )

n
n 1 Z

for an arbitrary ∈x H. For any ξ ∈ Z, we can write ξ ω ω= +x t ( )k for a unique ω ∈ S and
>t 0k and have ξ ω− =x t ( ).k Replacing a by x in (10) yields
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∫ ∑ Ω
ω ω= ′ +

μ

−
= ( )

D x
t p x t

( )
1

S ( )
.n

n
k k t k1 S

1

The sum of contributions of opposite points ω ∈ +S and ω− equals

∑ ∑

∑

Ω
ω ω ω

Ω
ω ω ω

Ω
ω ω

′ + − − ′ − −

= ′ +

μ μ

μ

μ
= =

=−

( ) ( )t p x t t p x t

t p x t

( ) ( ) ( ) ( )

( ) ( )
,

k k t k k k s k

k k t k

1 1

where = −s t and ω ω μ− = − =−t t k( ) ( ), 1 ,..., .k k By (13) this sum is equal to − p x1 ( ),
hence

∫ Ω= − = −
− +

D x
p x p x

( )
1

S ( )

1
2 ( )

,n
n 1 S

which completes the proof of (2) and (3). □
Remark. Reconstructions (2)–(3) do not hold for an arbitrary convex set Z. Theorem 3 is

equivalent to these reconstructions and consequently is not true for a general Z. However, it
could work as a parametrics for arbitrary convex Z and may be for variable velocity with no
traps, see [19].

7. Separators

Definition. Let p be an oscillatory polynomial of degree >m 2 with a hyperbolic point a. We
say that a polynomial q separates p from a, if for almost any line L through a, each
interval between consecutive zeros of p on L contains just one zero of q, except for the
interval that contains a, where q does not vanish: see figure 5. It follows that q has, at least,

−m 2 zero on L, hence ⩾ −q mdeg 2. We say that a separator q of a polynomial p is strict
if = −q mdeg 2.

One can find a separator q by the following method.

Theorem 6. For an arbitrary compact oscillatory set Z of degree m, there exists a
polynomial q of degree <m that separates Z from any hyperbolic point.

Proof. The case n = 1 is trivial; we assume that >n 1. Take a hyperbolic point a and
consider the Euler field = ∑ − ∂ ∂x a xe ( )a i i i centered at a. The polynomial

≐ −q p mpe ( )a a has degree ⩽ −m 1 and for any unit ω,

ω ω ω ω+ = + = ′ + − ++ −( )q a t t
t
t p a t tp a t mp a t( )

d
d

( ) ( ) ( ). (15)a
m m

t
1

We numerate roots of ω+p a t( ) by ω μ= = ± ±t t k( ), 1 ,...,k k as in (1) so that tk has the
same sign as k. By (15) and Rolleʼs theorem ω+q a t( )a has, at least, −m 2 roots

ω μ= = ± ± −s s k( ), 1 ,..., ( 1)k k such that

μ⩽ ⩽ ⩽ ⩽ = −+ − − − −t s t t s t k, , 1 ,..., 1. (16)k k k k k k1 1

By continuity it is true for all units ω, occasionally with non strict inequalities. Check that
there are exactly −m 2 such zeros sk counting with multiplicities. For any ω ∈ S, except
for a set of zero measures, all zeros tk are simple and all inequalities (16) are strict.
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Suppose that one of the intervals (16), say ≑ +I t t( , ),k k k 1 contains more than one zero s .k
The total number rk of zeros of qa in Ik is odd, since the polynomial ω+−t p a t( )m does
not vanish in I .k It follows that ⩾r 3k and ⩾r 1i for any i, which implies ∑ ⩾r mi i . This
is not possible since ⩽ −q mdeg 1a . By continuity (16) holds also for any unit ω in the
sense that ω+q a s( )a has a zero s of multiplicity −m 1, if this point is a root of

ω+p a s( ) of multiplicity m. It implies that all zeros ω μ= = −s s k( ), 1 ,..., 1k are
unambiguously defined and by the Rouche theorem are continuous functions of ω. We
have ω ω− = − −s s( ) ( )k k and each variety

ω ω ω μ= = + ∈ = −{ }x a s kW ( ) , S , 1 ,..., 1k k

is closed and homeomorphic to a sphere. By (16) these varieties separate hypersurfaces
μ=kZ , 1 ,...,k constructed in theorem 1. Check that ω+q a t( ) does not vanish for

∈ −t t t( , ).1 1 We can assume that <p 0 in H and have ω ω+ = ′ + ⩾± ± ±( ) ( )q a t t p a t 0.a t1 1

If q vanishes at a point ∈ −s t t( , )1 1 , it must have ⩾2 zeros, which is impossible since
<q mdeg a . This shows that qa separates p from a. It follows that qa separates p from any

other point ∈b H since the hyperbolic cavity H is inside all ovals W .k □

Corollary 7. Any separator q of a compact oscillatory set Z of degree μ=m 2 is an
oscillatory polynomial with a hyperbolic cavity ⊃G H. The zero set W of q is the union of
continuous ovals μ−W ,...,W1 1 and of a closed unbounded component μW if q is not strict such
that the sets H, μ μ μ μ− −Z , W, Z ,..., Z , W , Z , W1 1 2 1 1 are nested.

Proof. Any strict separator has no zeros ω= +x a s except for =s sk as in (16). If q is not
strict it must have exactly one such real zero, say ω= μs s ( ), which is defined and continuous
for ω ∈ ⧹ ′S S , where ′S is a subset of dimension < −n 1. This function is odd, since any line

ω ω= = + ∈ ∈ ⧹ ′ωL x a s s{ , }, S S contains only one such zero. It follows that ′S
divides the unit sphere in two opposite parts ±S and ω → ∞μs ( ) as ω → ′S . The equation

ω ω= + μx a s ( ) defines an unbounded component μW for ω ∈ +S . □

Proposition 8. Let p be an oscillatory polynomial of degree m such that the Taylor series of
+p a y( ) does not contain terms of degree −m 1 for a hyperbolic point a. Then

= −q p mpe ( )a a is a strict separator of p. In particular, for any even polynomial p with a
compact zero set the polynomial q0 is a strict separator.

Proof. The polynomial qa is a strict separator since ⩽ −q mdeg 2a . If p is even and Z
is compact, the unique hyperbolic cavity H is symmetric with respect to the origin and
contains the origin since it is convex. Therefore the second statement follows from the
first one. □

Figure 5. Polynomial p and a separator q
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Proposition 9. For an arbitrary elliptic oscillatory polynomial p of degree m and arbitrary
ε > 0, there exists an elliptic oscillatory polynomial εp of degree m such that the zero set εZ
of εp is regular and ε− <εp p in ∪ εZ Z .

Proof. Suppose that <p 0 in the hyperbolic camera H and ∈a H. The polynomial
= −q p mpe ( )a a separates p from a and >q 0a in H. Consider the polynomial δ= +p p qa1

for some small δ > 0. It is easy to see that p1 is an oscillatory polynomial with a hyperbolic
camera H1 that is close to H. For any unit ω, the multiplicity of any zero of

ω+ ∈p a t t( ),1 is bounded by κ − 1, where κ μ⩽ is the maximal multiplicity of zeros
of ω+p a t( ). We set δ= +p p q2 1 1 1 where q1 separates of p1 from a and δ > 0.1 If δ1 is
sufficiently small, the maximal multiplicity of zeros of ω+p a t( )2 is bounded by κ − 2 and
so on. A polynomial κp is again oscillatory and its zero set is regular. We have ε− <κp p , if
the numbers δ δ δκ−, ,...,1 1 chosen consecutively are sufficiently small. □

Example 5. A hypotrochoid given by the polynomial = + − +p x y x y x( , ) 4( ) 42 2 2 3

− + +xy x y12 27( ) 272 2 2 is oscillatory and = + −q x y4( ) 92 2 is a strict separator: see
figure 6.

Proposition 10. Any compact convex domain Q in n can be approximated by regular
hyperbolic cavities H of oscillatory sets admitting strict separators.

8. A generalization of Newtonʼs levitation theorem

I. Newton [17] proved that a mass uniformly distributed over a thin sphere ⊂ ES 3 generates
the zero gravitation field inside the sphere. The same is true for the cavity of a solid layer
between two ellipsoids homothetic with respect to the center. Dive [4] called a monoid the
layer between any two closed homothetic surfaces with respect to an interior point. He proved

Figure 6. Hypotrochoid (thick), a regular approximation (thin)
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that any non-ellipsoidal monoid cannot create levitation in the cavity. Arnold [3] constructed
a distribution of electric charge on a regular compact oscillatory set Z that generates the zero
electrical field in the hyperbolic cavity H. This distribution, however, has a variable sign
except if Z is not an ellipsoid. Similar problems for magnetic fields were studied in [20]. We
show that for any oscillatory set Z that admits a strict separator, there exists a strictly positive
mass distribution on Z that generates levitation in H. If Z is regular, the set of such mass
distributions form a convex cone of dimension − + .m n

n
2 Also layers bounded by close level

sets of the corresponding oscillatory polynomial p generate levitation in a cavity. The key
notion is a strict separator of an oscillatory polynomial.

Theorem 11. For an arbitrary oscillatory polynomial p in E3 with a compact zero set and
any strict separator q, the distribution of mass in E3 with density δq p( ) generates the zero
gravitation field in the hyperbolic cavity H of p.

Proof. For any ω ∈ ⧹ ′S S , the polynomial ω= +ωp t p a t( ) ( ) has m real zeros ωt ( ),k

μ= ± ± ±k 1, 2 ,..., numerated as in theorem 1. By the residue theorem we have:

∑ ∑ω
ω

ω
ω

+
′ + = +

′ + = − =∞
q a t

p a t
q a t
p a t

t
q
p
t

( )
( )

res
( )
( )

d res d 0. (17)k

t k
t

t
k

According to the numeration a zero tk is positive or negative together with k. Suppose that
<p 0 and >q 0 in H. Signs of ω μ μ′ + = − −p a t k( ), ,..., 1, 1 ,...,t k alternate and

ω′ + >kp a t( ) 0t k for any odd k whereas ω′ + <kp a t( ) 0t k with even k. The sign of
ω+q a t( )k alternates in the different way: ω+ >q a t( ) 0k for odd k and ω+ <q a t( ) 0k

for even k. Therefore we have:

ω
ω

ω
ω

+
′ + > > +

′ + < <q a t

p a t
k

q a t

p a t
k

( )
( )

0 for 0;
( )
( )

0 for 0. (18)k

t k

k

t k

The sum of these fractions vanishes by (17). By Newtonʼs law the gravitation field decreases
at the same rate as a beam of straight rays diverges. Following Newtonʼs geometrical method
we consider a small solid angle ω ⊂a EC( , ) with vertex at a of spherical measure ωd . The
mass of a piece of ∩ ωaZ C( , ) at a point ω= +x a tk is equal to

ω Ω Ω≑ = ′m t
q x
p x

t
q x
p x

( )
, ( )

( )
( )

.k k k
t

2 2

Its contribution to the field at a is equal to ω≑ −F m t dk k k
2 for >k 0 and

Ω≑ − −F t mk k k
2 for <k 0, since these points are on opposite site of a. By (18) the total

of these contributions equals the sum (17) times Ω, hence cancels. Theorem 11 follows since
this conclusion holds for almost all ω.

Remark 1. For the polynomial = −p x 1,2 the above construction gives =q 20 .
Theorem 11 guarantees levitation in a sphere generated by a uniform distribution of mass on
the sphere. This is Newtonʼs attraction theorem. If Z is a compact regular oscillatory set of
degree m and q is a strict separator, then any polynomial q̃ of degree −m 2 that is sufficiently
close to q is a strict separator. By theorem 11 for any such q̃, ξq p˜d d is a volume form in Z.
Any mass distribution in Z that is proportional to this form admits levitation in H.
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Remark 2. Theorem 11 is generalized for arbitrary linear space ,n if the corresponding
‘gravitation’ force generated by a delta-like mass at the origin has the potential

σ ω= − +U r( ) ,n 1 where σ ω( ) is an arbitrary even function of ω ∈ S.

Corollary 12. Under conditions of theorem 11, if <p 0 in H, the distribution of mass with
density q xd in the layer ≑ ⩽ ⩽L x a p x b{ : ( ) } generates the zero gravitation field in H for
arbitrary a b, such that ≠q 0 in L.

Proof. By theorem 11, the density δ λ−q p( ) generates the zero gravity in H for any λ
such that q separates λ−p . By Fubiniʼs the same is true for the density

∫ δ λ λ− =q p q x( )d d
a

b

supported by the layer ⩽ ⩽a p b{ } if q separates λ−p for λ⩽ ⩽a b. □

A layer generated by a hypotrochoid is shown in figure 6.
Example 7. A surface of normals of the system of crystal optics is given by the equation

ξ =p ( ) 0 where:

ξ σ ξ σ ξ σ ξ ξ
σ σ σ ξ σ σ σ ξ σ σ σ ξ σ σ σ

= + +
− + − + − + +
( )p ( )

( ) ( ) ( )

1 1
2

2 2
2

3 3
2 2

3 2 1 1
2

1 3 2 2
2

1 2 3 3
2

1 2 3

is an even elliptic oscillatory polynomial. The polynomial = −q p pe ( ) 40 is a strict
separator.

9. Non strict case

Theorem 13. Let p be an elliptic oscillatory polynomial of degree m and q be a separator.
The gravitation field generated by mass distribution in Z with the density δq p( ) is constant
in the hyperbolic cavity and equals

∫ ω
ω ω Ω= − −

−
F

q

p

( )

( )
· , (19)m

mP

1
n 1

where integration van be taken over an arbitrary unit hemisphere.

Note that the integrand ω ω ω−q p( ) ( ) ·m m1 is an even vector function of ω.

Proof. Let again ωaC( , ) be a small solid angle as in theorem 11. By (17) the gravitation
field generated by points on ∩ ωaZ C( , ) upon a point ∈a H equals the vector

∑ ω Ω′=

q x
p x
( )
( )

· .
k

m

t1

where ω= +x a t .k By the residue theorem, the sum of scalars is equal to

∑ ω
ω′ = − = −

=
∞

−q x
p x

q
p
t

q

p
( )
( )

res d
( )

( )
.

k

m

t

m

m1

1

Integrating over any unit hemisphere, we get (19). □
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