A PARAMETRIX METHOD IN INTEGRAL GEOMETRY

By

V. P. PALAMODOV

Abstract. The objective of reconstructive integral geometry is to recover a function from its integrals over a set of subvarieties. A parametrix is a method of reconstruction of a function from its integral data up to a smoothing operator. In the simplest case, a parametrix recovers a function with a jump singularity along a curve (surface) up to a continuous function, which can be quite informative in medical imaging. We provide an explicit construction for a wide class of acquisition geometries. The case of photo-acoustic geometry is of special interest.

1 Introduction

Let \((X, g)\) be a Riemannian manifold and \(\Sigma\) be a family of smooth submanifolds \(\sigma \subset X\). For a function \(f\) defined in \(X\) with compact support, the family of integrals

\[
g(\sigma) = \int_{\sigma} f \, d_g S, \quad \sigma \in \Sigma
\]

defines function on \(\Sigma\). The family \(\Sigma\) is called the acquisition geometry of the integral transform \(R_{\Sigma} f \doteq g\). An analytic inversion formula \(g \mapsto f\) is known only for special types of acquisition geometries \(\Sigma\); see the survey in [11]. Here, we construct a parametrix for a class of weighted integral transforms \(R_{\Sigma}\) for which analytic reconstruction is not known (Sections 5–8).

A parametrix recovers not only the wave front of a function \(f\) but also the profile of its singularity. A parametrix for a class of integral transforms was constructed earlier by Beylkin [1] in terms of Fourier integral operators. Pestov and Uhlmann [12] gave a construction of a parametrix for the geodesic integral transform on two-dimensional simple Riemannian manifolds.

In Section 9, we apply our construction for photo-acoustic (thermo-acoustic) acquisition geometry. This topic was studied in papers of Popov and Sushko [13], Kunyansky [8], Xu-Wang [15], Natterer [9], and in [11]. Our method is based on the Calderón-Zygmund theory of singular integral operators adapted in Section 10.
2 Parametrices in Sobolev spaces

Let X and Y be compact manifolds with boundaries of class C^κ, where κ is a natural number. The Sobolev spaces $H^\alpha(X)$ and $H^\alpha(Y)$ are well-defined for every real α, $|\alpha| < \kappa$; see, e.g., [14]. We say that a densely defined operator $A : L_2(X) \to L_2(Y)$ has Sobolev order $d \in \mathbb{R}$ if it generates a bounded operator $A_\alpha : H^\alpha(X) \to H^{\alpha-d}(Y)$ for every α, $|\alpha| < \kappa$, $|\alpha - d| < \kappa$, which is the restriction of A for positive α and a closure of A for negative α. If d is negative, A is called a d-smoothing operator. An operator $P : L_2(Y) \to L_2(X)$ is said to be an s-parametrix for A if $0 < s \leq \kappa$ and $PA = \text{Id} + R$, where the remainder R is a s-smoothing operator. If P_1 is a 1-parametrix and R_1 is a remainder, a k-parametrix P_k can be found for any natural number k recursively by $P_k = P_{k-1} - R_{k-1}P_1$, $R_k = -R_{k-1}R_1$ for $k = 2, \ldots, \kappa$. Every 1-smoothing operator is compact in $L_2(X)$; hence P_1A is a Fredholm operator, and the image of A is closed. An s-parametrix P_s recovers the singularity of an arbitrary function $f \in H^\alpha(X)$ from Af up to a function $h = R_s f \in H^{\alpha+s}(X)$. In particular, if $f = \delta_y$ is the delta-function at a point $y \in X$ and $s > n$, then $h = R_s \delta_y$ is continuous. In fact, $\delta_y \in H^\alpha(X)$ for every $\alpha < -n/2$, which implies $h \in H^{\alpha+s}(X)$. The space $H^{\alpha+s}(X)$ is contained in $C(X)$ if $\alpha > n/2 - s$; hence h is continuous. The equation $P_s A \delta_y = \delta_y + h$ shows that every delta function can be recognized from data of $A \delta_y$ by means of an s-parametrix P_s.

3 Generating functions and integrals

Let X and Σ be smooth n-dimensional manifolds, and $\Phi : X \times \Sigma \to \mathbb{R}$ a C^2-smooth real function such that $d\Phi \neq 0$ on the set $Z = \Phi^{-1}(0)$. Let $p : Z \to X$, $\pi : Z \to \Sigma$ be the natural projections. Suppose that

\[\det(d_{x,t}d_{\sigma,\tau}(t\tau\Phi(x, \sigma))) \neq 0, \]

where $d_{x,t}$, $d_{\sigma,\tau}$ are exterior differentials in the manifolds $X \times \mathbb{R}$ and $\Sigma \times \mathbb{R}$, respectively.

Proposition 3.1. Property (2) holds if and only if π has rank n and $p^* : N^*(Z) \to T^*(X)$ is a local diffeomorphism, where $N^*(Z)$ denotes the conormal bundle of Z and $p^*(x, \sigma; \zeta, s) = (x, \zeta) \in T^*(X)$.

For a proof, see [10, Proposition 1.1].

It follows that for each $\sigma \in \Sigma$, the set $Z(\sigma) = \pi^{-1}(\sigma) = \{x : \Phi(x, \sigma) = 0\}$ is a C^1-hypersurface in X; and for every point $x \in X$ and tangent hyperplane $h \subset T_x(X)$, there exists a locally unique hypersurface $Z(\sigma)$ through x tangent to h.

V. P. PALAMODOV
The function Φ is called **generating** for the acquisition geometry $\{Z(\sigma) : \sigma \in \Sigma\}$. Let dV be a volume form on X and $\rho = \rho(x, \sigma)$ a continuous function on Z. We define a weighted integral transform of the continuous function f with compact support in X by

$$M_r f(\sigma) = \int_X \delta(\Phi(x, \sigma))r(x, \sigma)f(x)dV.$$ \hspace{1cm} (3)

The limit exists since $d_x \Phi \neq 0$. We can write this integral in the form

$$M_r f(\sigma) = \int_{Z(\sigma)} f(x)r(x, \sigma)q(x, \sigma),$$ \hspace{1cm} (4)

where $q = dV/d\theta$ denotes an arbitrary $(n-1)$-differential form q such that $d\Phi \wedge q = dV$. An orientation is defined in a hypersurface $Z(\sigma)$ by means of the form $d_x \Phi$, and the integral over $Z(\sigma)$ is well-defined.

Choose a volume form $d\Sigma$ on Σ and interchange the roles of X and Σ, keeping the same generating function Φ. The corresponding integral transform M_r^* is called the **back projection** operator. Note that condition (2) is symmetric, and Proposition 3.2 holds also for the operator M_r^*.

For a closed set $K \subset X$ and a real α, we denote by $H^\alpha_0(K(X))$ the subspace of $H^\alpha(X)$ consisting of distributions with support in K. The subspace $H^\alpha_0(\Sigma)$ of $H^\alpha(\Sigma)$ is defined similarly.

Proposition 3.2. If Φ is a smooth generating function satisfying (2) and r is a smooth function, then for any compact set $K \subset X$ with smooth boundary, any real α, and any smooth function ϕ with compact support in Σ,

$$\|\phi M_r f\|^{\alpha(n-1)/2} \leq C \|f\|^\alpha, \ f \in H^\alpha_0(K(X)),$$

where C is a constant which does not depend on f. If the map p is proper, then the operator $M_r : H^\alpha_0(K(X)) \to H^\alpha_0(\Sigma)$ is densely defined, where $L = \pi p^{-1}(K)$, and has Sobolev order $(1-n)/2$.

Proof. We can write the transform as a Fourier integral operator:

$$M_r f(\sigma) = \int_K \int_{\mathbb{R}} \exp(2\pi i \tau \Phi(x, \sigma))r(x, \sigma)f(x)d\tau dV.$$ \hspace{1cm} (4)

The critical set of the phase function $\tau \Phi(x, \sigma)$ is the hypersurface $F(\sigma)$, and the condition $d_x \Phi \neq 0$ implies that the phase function is non-degenerate. The corresponding conic Lagrange variety is

$$L = \{(x, \sigma; \zeta, s) \in T^*(X \times \Sigma) : \Phi(x, \sigma) = 0, \ s = \lambda d_\sigma \Phi, \ \zeta = \lambda d_x \Phi, \ \lambda \neq 0\}.$$
The rank of the matrix $\partial(x, \xi)/\partial(\sigma, s)$ equals $2n$ at every point of L. This follows from (2); for details, see [10, Lemma 3.2]. Therefore, projections of L to $T^*(X)$ and to $T^*(\Sigma)$ are submersions, that is, L is locally the graph of a canonical transformation. The symbol $a(x, \sigma; \xi, s) = 1$ is a homogeneous function of ξ, s of order 0. The order m of the Fourier integral operator M_r satisfies

$$m + \text{dim} X \times \Sigma/4 - N/2 = 0,$$

where $\text{dim} X \times \Sigma = 2n$ and $N = 1$ is the number of variables τ. This yields $m = (1 - n)/2$, which means that the functional

$$\psi \mapsto \int_X \int_{\Sigma} \int_{\mathbb{R}} \exp(2\pi i \tau \Phi(x, \sigma)) r(x, \sigma) \psi(x, \sigma) d\tau dV d\Sigma$$

defined for smooth test densities ψ, is a distribution of the class $I^{(1-n)/2}(X \times \Sigma, L)$ in the sense of Hörmander. By [6, Corollary 25.3.2], the operator ϕM_r defines a continuous map $H^a_F(X) \to H^{a+(n-1)/2}_F(\Sigma)$ for every real a, where $F = \text{supp} \phi$.

If p is proper, the set $L = \pi(p^{-1}(K))$ is compact, and we can choose a cut-off function such that $\phi = 1$ in L. Then $\phi M_r f = M_r f$, and the second statement follows.

We say that a generating function Φ is resolved if $\Sigma = \mathbb{R} \times \Omega$, where Ω is the unit sphere in euclidean space E^n and $\Phi(x, \sigma) = \theta(x, \omega) - \lambda$, $\sigma = (\lambda, \omega)$, $\lambda \in \mathbb{R}$, $\omega \in \Omega$ for a function $\theta \in C^2(X \times \Omega)$. If Φ is resolved, the map $p : Z \to X$ is proper since θ is continuous. It follows that $M_r f$ has compact support in Σ if f does.

Definition. We call a generating function Φ regular if it is resolved, satisfies (2), and the equations

$$\theta(x, \omega) = \theta(y, \omega), \quad d_\omega \theta(x, \omega) = d_\omega \theta(y, \omega)$$

are satisfied simultaneously for no $x \neq y \in X, \omega \in \Omega$ (that is to say, the family \{ $Z(\sigma) : \sigma \in \Sigma$ \} has no conjugate points.)

4 Principal value integrals

Let f be a smooth real function on a manifold X having only simple zeros, i.e., $df(x) \neq 0$ whenever $f(x) = 0$. For a natural number n, we consider the functional

$$I_n(a) = \int_X \frac{a}{(f - i\varepsilon)^n} = \lim_{\varepsilon \searrow 0} \int_X \frac{a}{(f - i\varepsilon)^n},$$
defined for test densities a in X. For a real density a, the functional
\[\int_X \frac{a}{f^n} = \text{Re} I_n(a) \]
is called a **principal value integral**.

Proposition 4.1. For every smooth function f having only simple zeros, the limit in (6) exists for every test density a. The functional I_n is a generalized function in X.

Proof. For an arbitrary smooth function g, tangent field t, and test density a in X,
\[d(g \wedge (t \downarrow a)) = dg \wedge (t \downarrow a) + g \, d(t \downarrow a), \]
where the symbol \downarrow denotes the inner product of a field and a form. If a has compact support, the integral of the left hand side over X vanishes, and
\[\int t(g) \, a = \int (t \downarrow dg) \wedge a = \int dg \wedge (t \downarrow a) = - \int g \, d(t \downarrow a). \]

To prove the statement, choose a tangent field t_1 and a smooth function t_0 in X such that $t_1(f) + t_0 = 1$, and apply induction in $n \geq 1$. In the case $n = 1$, we integrate by parts in (6) and apply (7) to obtain
\[I_1(a) = \int \frac{(t_1(f) + t_0)a}{f - i0} = t_1(\log(f - i0))a + \int t_0a \]
\[= - \int \log(f - i0)d(t_1 \downarrow a) + \int t_0a, \]
where $\log(f - i0)$ is a locally integrable function.

For the case $n > 1$, we can write
\[I_n(a) = \int \frac{(t_1(f) + t_0)a}{(f - i0)^n} = \frac{1}{1 - n} \int t_1[\frac{1}{(f - i0)^{n-1}}]a + I_{n-1}(t_0a) \]
\[= \frac{1}{n - 1} \int \frac{d(t_1 \downarrow a)}{(f - i0)^{n-1}} + I_{n-1}(t_0a) = I_{n-1}(\frac{d(t_1 \downarrow a)}{n - 1} + t_0a). \]
Here, the form $d(t_1 \downarrow a)$ is again a smooth density with compact support in X. \(\square\)

5 Filtered back projection operator

Theorem 5.1. Let X be an open set in euclidean space E^n, $\Phi = \theta - \lambda$ a smooth regular generating function on $X \times \mathbb{R} \times \Omega$ of class C^κ, and $\rho \in C^\kappa(X \times \Omega)$, where $\kappa > n + 1$. Define an operator by the principal value integral
\[Q_x g(x) = \pi_n(n - 1)! \int g(\lambda, \omega) d\sigma(\lambda) d\Omega \]

\[\int \frac{\rho(x, \omega)g(\lambda, \omega)d\lambda d\Omega}{(\theta(x, \omega) - \lambda)^n} \]
for even n and by

$$Q_{\rho}g(x) = \pi_n \int_{\Omega} \rho(x, \omega) g^{(n-1)}(\theta(x, \omega), \omega) d\omega$$

for odd $n \geq 3$, where g is a function defined on $\mathbb{R} \times \Omega$, $g^{(n-1)} = (\partial/\partial \lambda)^{n-1} g$, and $\pi_n = -(2\pi)^{-n}$ for even n, $\pi_n = 2(2\pi)^{1-n}$ for odd n. Then

$$Q_{\rho}M_r = D_{r,\rho} \text{Id} + A_{r,\rho},$$

where

$$D_{r,\rho}(x) = \frac{1}{|S^{n-1}|} \int_{\Omega} \frac{\rho(x, \omega) r(x, \omega) d\omega}{|\nabla_x \theta(x, \omega)|^n}.$$

A_{ρ} is a singular integral operator of Sobolev order 0 with the kernel $-(n-1)! \text{Re } \Theta$ if n even and $1/2\pi(n-1)! \text{Im } \Theta$ if n odd. Here, the singular integral

$$\Theta(x, y) = \int_{\Omega} \frac{\rho(x, \omega) r(y, \omega) d\omega}{(\theta(y, \omega) - \theta(x, \omega) - i0)^n}$$

is defined for $x \neq y \in X$ by the method of Section 4.

Lemma 5.2. The composition $Q_{\rho}M_r$ extends to a continuous operator $L_2(X)_{\text{comp}} \rightarrow L_2(X)_{\text{loc}}$.

Proof. For even n, integrating by parts in (8) yields

$$Q_{\rho}g(x) = \pi_n (n-1)! \int_{\Omega} \rho(x, \omega) \int_{\mathbb{R}} (\theta(x, \omega) - \lambda)^{-n} g(\lambda, \omega) d\lambda d\omega,$$

that is,

$$Q_{\rho} = \pi_n (n-1)! M_{\rho}^*(\Lambda_n \times \text{Id}),$$

where Λ_n is the convolution operator in \mathbb{R} with the principal value kernel λ^{-n} acting on the λ variable and

$$M_{\rho}^* g(x) = \int_{\Omega} \rho(x, \omega) g(\theta(x, \omega), \omega) d\omega$$

is a weighted back projection operator. By Proposition 3.2, the operator M_r is bounded in the spaces $H^0_k(X) \rightarrow H^{(n-1)/2}_L(\Sigma)$, where $L = \pi(p^{-1}(K))$ is a compact in Σ since p is proper. The convolution operator has a factorization $\Lambda_n = C_n(\partial/\partial \lambda)^{n-1} H$, where H is a Hilbert operator and C_n is a constant. It follows that for arbitrary $\alpha \in \mathbb{R}$, Λ_n defines a bounded map $H^\alpha_\mathbb{R} \rightarrow H^{a-n+1}_\mathbb{R}$. Taking $\alpha = n-1$, we conclude that $\Lambda_n \times \text{Id} : H^{(n-1)/2}_\mathbb{R} \rightarrow H^{-(n-1)/2}_\mathbb{R}$ and $H^{-(n-1)/2}_\mathbb{R} \times \Omega \rightarrow H^{0-n+1}_\mathbb{R} \times \Omega$ is also bounded. By [10, Proposition 3.1], M_{ρ}^* is continuous as an operator $H^{-(n-1)/2}_\mathbb{R} \times \Omega \rightarrow H^0_\mathbb{R} \times \Omega$.

Finally, $M^*_\rho(\Lambda_n \times \text{Id})M_r$ is continuous as an operator $L_2(X)_{\text{comp}} \to L_2(X)_{\text{loc}}$, and the statement follows.

In the case of odd n, there exists a similar factorization with $\Lambda_n = C_n(\partial/\partial\lambda)^{n-1}$, which leads to the same conclusion.

\textbf{Lemma 5.3.} For even n, arbitrary $x \in X$, $\omega \in \Omega$, and small ε,

\begin{equation}
 d_{n,\varepsilon}(x, \omega) \doteq \frac{(n-1)!}{(2\pi i)^{n-1}} \Re \int_X \frac{\rho(x, \omega)r(y, \omega)e_\varepsilon(s)dV(y)}{(\theta(y, \omega) - \theta(x, \omega) - i0)^n} = \frac{1}{|S^{n-1}|} \frac{\rho(x, \omega)r(x, \omega)}{|\nabla\theta(x, \omega)|^n} + o(1),
\end{equation}

where $o(1) \to 0$ as $\varepsilon \to 0$. For odd n,

\begin{equation}
 d_{n,\varepsilon}(x, \omega) \doteq \frac{(n-1)!}{(2\pi i)^{n-1}} \Im \int_X \frac{\rho(x, \omega)r(y, \omega)e_\varepsilon(s)dV(y)}{(\theta(y, \omega) - \theta(x, \omega) - i0)^n} = \frac{2\rho(x, \omega)r(x, \omega)}{2|S^{n-1}|} + O(\varepsilon),
\end{equation}

where $s = y - x$.

\textbf{Proof.} The proof follows along the lines of [11, Lemma 3.3].

\textbf{Proof of Theorem 5.1.} We have

$$d_n(x) = \lim_{\varepsilon \to 0} \int_\Omega d_{n,\varepsilon}(x, \omega) \, d\Omega.$$

Taking the limit and integrating (12) over Ω we obtain, for even n,

$$d_n(x) = \frac{1}{|S^{n-1}|} \int_\Omega \frac{\rho(x, \omega)r(x, \omega) \, d\Omega}{|\nabla\theta(x, \omega)|^n} = D_{r,\rho}(x),$$

which implies (10). For odd n, we again obtain $d_n = D_{r,\rho}$, and (10) follows.

Fixing a point $x \in X$ and setting $f_\varepsilon(y) = e_\varepsilon(y - x)f(y)$ for a C^n-function f in X gives

$$Q_\rho M_r(f_\varepsilon)(x) = c_n \int \frac{\rho M_r(f_\varepsilon) \, d\lambda \, d\Omega}{(\theta - \lambda)^n} = c_n \Re \int_X \frac{\rho(x, \omega)r(y, \omega)e_\varepsilon(y - x)f(y)dV(y)}{(\theta(y, \omega) - \theta(x, \omega) - i0)^n},$$

where $c_n = \pi_n(n-1)!$. By Lemma 5.3, the right hand side tends to $D_{r,\rho}(x)f(x)$ as $\varepsilon \to 0$. The operator $f \mapsto D_{r,\rho}f$ acting in $L_2(X)_{\text{comp}}$ is obviously bounded; and by Lemma 5.2, the residue $A_{r,\rho} = Q_\rho M_r - D_{r,\rho}\text{Id}$ is the off-diagonal kernel of $Q_\rho M_r$ and is a bounded operator $L_2(X)_{\text{comp}}(X) \to L_2(X)_{\text{loc}}$. Take an arbitrary function
$f \in L_2(X)_{\text{comp}}$ that vanishes in a neighborhood of x and calculate

$$
Q_{\rho}M_{\rho}f(x) = c_n \int X \frac{M_{\rho}f(\lambda, \omega) d\lambda \rho(x, \omega)d\Omega}{(\theta(x, \omega) - \lambda)^n}
$$

$$
= c_n \int \Omega \rho(x, \omega)d\Omega \int_{\mathbb{R}} \frac{d\lambda}{\theta(x, \omega) - \lambda)^n} \int_{Z(\lambda, \omega)} r(y, \omega)f(y)q
$$

$$
= c_n \int X \left(\int \Omega \frac{\rho(x, \omega)r(y, \omega)d\Omega}{(\theta(x, \omega) - \theta(y, \omega))^n} \right) f(y)d\theta \wedge q
$$

$$
= c_n \int X \Re \Theta(x, y)f(y)dV,
$$

where we have applied (4) and Θ is as in (11). The relation $d\lambda = d\theta$ holds in Z, and the equation $d\theta \wedge q = dV$ is satisfied in X, by definition. Thus the function $-c_n \Re \Theta$ is the off-diagonal kernel of the operator $Q_{\rho}M_{\rho}$. A similar equation holds for odd n with the kernel $\Im \Theta$.

\section{Off-diagonal kernel}

\textbf{Proposition 6.1.} Under the assumptions of Theorem 5.1, the operator $A_{\rho, \theta} = Q_{\rho}M_{\rho} - D_{\rho, \theta} \Id$ is a singular integral operator of Sobolev order 0 with leading term

$$
a_0(x, s) = \begin{cases}
\Re q_0(x, s) & \text{for even } n, \\
-\Im q_0(x, s)/\pi & \text{for odd } n,
\end{cases}
$$

where

$$
q_0(x, s) = -(n-1)! \int \Omega \frac{\rho(x, \omega) r(x, \omega) d\Omega}{(\nabla \theta(x, \omega), s) - i0)^n}, \quad s = y - x.
$$

\textbf{Proof.} We show that the kernel Θ defines an operator of Sobolev order 0. Applying the Lagrange formula to $\theta(y, \omega)$ at $y = x$ and estimating the remainder, we get

$$
\theta(y, \omega) - \theta(x, \omega) = (\nabla \theta(x, \omega), s) + \xi(x, s, \omega),
$$

where

$$
\max_{|l|+|j| \leq \kappa-2} \max_{x \in K} \max_{\omega} \max |s|^{|l|} |D_s D_x^j \xi(x, s, \omega)| \leq C_K |s|^2.
$$

For $F(p) = (1 - p)^{-n}$, the Lagrange formula yields

$$
(1 + p)^{-n} = 1 - np \int_0^1 (1 + tp)^{-n-1} dt = 1 - np + \frac{n(n + 1)}{2} p^2 \int_0^1 (1 + tp)^{-n-2} dt.
$$
Taking \(p = \xi(x, s)(\langle \nabla \theta(x, \omega), s \rangle - i0)^{-1} \) and multiplying by

\[
(\langle \nabla \theta(x, \omega), s \rangle - i0)^{-n}
\]
yields

\[
1 \quad \frac{1}{(\langle \nabla \theta(x, \omega), s \rangle - i0)^n} = \frac{1}{(\langle \nabla \theta(x, \omega), s \rangle - i0)^n - n \int_0^1 \xi dt} \quad (\langle \nabla \theta(x, \omega), s \rangle + t\xi - i0)^{n+1}.
\]

Integrating against the density \(\rho(x, \omega)r(y, \omega)d\Omega \) yields

\[
\Theta(x, y) = \int \frac{\rho(x, \omega)r(y, \omega)d\Omega}{(\theta(y, \omega) - \theta(x, \omega) - i0)^n} = q_0(x, s) + r_1(x, s),
\]

where the first term on the right hand side is as in (13) and

\[
r_1(x, s) = -n \int_0^1 dt \int \frac{\xi(x, s, \omega)\rho(x, \omega)r(x, \omega)d\Omega}{(\langle \nabla \theta(x, \omega), s \rangle + t\xi - i0)^{n+1}} + \int \frac{\rho(x, \omega)r(y, \omega) - r(x, \omega)d\Omega}{(\theta(y, \omega) - \theta(x, \omega) - i0)^n}.
\]

For each \(i = 1, 2, \ldots, n \), we can find a smooth function \(t_0i \) and a smooth tangent field \(t_1i \) in \(\Omega \) such that \(t_0i \nabla x\theta + t_1i(\nabla x\theta) = e_i \), where the gradient \(\nabla x\theta \) is viewed as a column vector and \(e_i \) is the \(i \)-th column of the unit \(n \times n \)-matrix. For a local construction, we use columns of the inverse to the matrix

\[
\begin{pmatrix}
\theta_1 & \partial_\omega_1 \theta_1 & \cdots & \partial_\omega_n \theta_1 \\
\theta_2 & \partial_\omega_1 \theta_2 & \cdots & \partial_\omega_n \theta_2 \\
\vdots & \vdots & \cdots & \vdots \\
\theta_n & \partial_\omega_1 \theta_n & \cdots & \partial_\omega_n \theta_n
\end{pmatrix},
\]

where \(\theta_k = \partial \theta/\partial x_k, k = 1, \ldots, n \). By (2), this matrix is invertible for any local coordinate system \(\omega_1, \ldots, \omega_{n-1} \) in \(\Omega \). We extend the functions \(t_0i \) and fields \(t_{1i} \) to the whole sphere by means of a partition of unity. Consider the differential operator

\[
t_0 + t_1, \quad t_0 = |s|^{-2} \sum_{i=1}^n s_i t_{0i}, \quad t_1 = |s|^{-2} \sum_{i=1}^n s_i t_{1i},
\]

where \(t_0 \) is a function and \(t_1 \) is a tangent field on the sphere with coefficient depending on \(s \). Consider the function \(v = v(x, s) = \langle \nabla \theta(x, \omega), s \rangle - i0 \). We have

\[
t_0v + t_1(v) = |s|^{-2} \sum_{i=1}^n s_i^2 = 1.
\]
Therefore \(\tau_{-k}(v^{-k}) = (t_0 v + k^{-1} t_1(v))v^{-k-1} = v^{-k-1} \) for an arbitrary integer \(k \neq 0 \), where \(\tau_{-k} = t_0 + k^{-1} t_1 \) and \(t_0 + t_1(\log v) = v^{-1} \). Integration by parts yields

\[
q_0 = \int_{\Omega} \rho v^{-n} d\Omega = \int_{\Omega} \tau_{1-n}(v^{-1})\rho d\Omega = \frac{1}{1 - n} \int_{\Omega} v^{1-n} \tau_{1-n}^*(\rho) d\Omega,
\]

where \(\tau_k^* \) is the adjoint differential operator to \(\tau_k \) which is a homogeneous function of \(s \) of degree \(-1\). Integrating by parts \(n \) times, we obtain

\[
q_0(s) = \cdots = b_n \int_{\Omega} v^{-1} \tau_{1}^* (\cdots \tau_{1-n}^*(\rho)) d\Omega
\]

(17)

\[
= b_n \int_{\Omega} [\log v t_1^* + t_0^*] \tau_{1}^* (\cdots \tau_{1-n}^*(\rho)) d\Omega,
\]

where \(b_n = (-1)^{n-1} / (n-1)! \). The function \(t_1^* \tau_{1-n}^* (\cdots \tau_{1-n}^*(\rho)) \) as well as the function \(t_0^* \tau_{1-n}^* (\cdots \tau_{1-n}^*(\rho)) \) has homogeneous coefficients of degree \(-n\) with respect to \(s \). We check that the integral (17) is a homogeneous function of degree \(-n\). Indeed,

\[
\log v = \log(v/|s|) + \log |s|,
\]

where the first term in the right hand side is homogeneous of degree 0 and the second term vanishes since

\[
\int_{\Omega} t_1^* \tau_{1-n}^* (\cdots \tau_{1-n}^*(\rho)) \log |s| d\Omega = \int_{\Omega} \tau_{1-n}^* (\cdots \tau_{1-n}^*(\rho)) t_1(\log |s|) d\Omega = 0
\]

and \(\log |s| \) does not depend on \(\omega \). This proves that the kernel \(q_0 \) is homogeneous in \(s \) of degree \(-n\). To get a bounded kernel in the right hand side of (17), we integrate by parts one more time and obtain an integral with bounded kernel \(v \log v \).

Integrating by parts again, we get, for an arbitrary natural number \(\kappa \geq n + 1 \),

\[
\max_{i+j \leq \kappa-1} \max_{x \in K} |s|^{n+i} |D_x^i D_s^j q_0(x, s)| \leq C_K, \ s \neq 0
\]

for an arbitrary compact set \(K \subset X \). Similar arguments applied to (16) show that for sufficiently small \(\varepsilon \) and \(|s| < \varepsilon \),

\[
\max_{i+j \leq \kappa-1} \max_{x \in K} |s|^{n+i} |D_x^i D_s^j r_1(x, s)| \leq C_K |s|, \ s \neq 0.
\]

(18)

Therefore, the right hand side of (11) has the structure of equations (33)–(34) below with principal term (13).

To show that the kernel \(\text{Re}(i^n q_0) \) satisfies (32), we invoke the following fact, whose proof is given in [11, Lemma 4.3].

Proposition 6.2. Let \(v \in \mathbb{R}^n \) and \(a \in \mathbb{R} \) be such that \(|a| < |v| \). Then for even \(n \geq 2 \),

\[
\text{Re} \int_{\Omega} \frac{i^n d\Omega}{(\langle s, v \rangle - a - i0)^n} = 0,
\]

where \(d\Omega \) is the euclidean volume form on the unit sphere \(\Omega \) in \(\mathbb{R}^n \).
This yields
\[\text{Re} \int_{\Omega} \frac{i^n d\Omega}{(\langle \nabla \theta(x, \omega), s \rangle - i0)^n} = 0 \]
for all \(x \in X \). Integrating over \(\Omega \) and changing the order of integrals yields
\[\text{Re} \int_{\Omega} i^n q_0(x, s) d\Omega = 0, \]
which completes the proof of Proposition 6.1.

\[\square \]

7 Vanishing of the off-diagonal kernel and parametrix

Assume that \(\Omega \) is oriented by the volume form \(d\Omega \). A key point of our construction is the following proposition.

Proposition 7.1. The integral (13) vanishes if \(\eta = r \rho \) satisfies
\[\eta(x, \omega) d\Omega = \frac{1}{(n-1)!} \nabla \theta \wedge (d_\omega \nabla \theta)^{n-1}. \]

Proof. Fix \(x \in X \) and consider the hypersurface
\[H = \text{Im} \{ \nabla \theta(x, \cdot) : \Omega \to E^n \}. \]

Equation (19) can be written in the form \(\eta(x, \omega) d\Omega = \nabla \theta \wedge dh \), where the differential form \(dh = 1/(n-1)! (d_\omega \nabla \theta)^{n-1} \) is the euclidean area form of \(H \) expressed in coordinates \(\omega \). Define \(z : H \to S^{n-1} \) by \(z(h) = h/|h| \). Then
\[\eta(x, \omega) d\Omega = \nabla \theta \wedge dh = |\nabla \theta|^n dz, \]
where \(dz \) is the area form of \(S^{n-1} \). This yields
\[\int_{\Omega} \frac{\eta(x, \omega) d\Omega}{(\langle \nabla \theta(x, \omega), s \rangle - i0)^n} = \int_{\Omega} \frac{dz(\omega)}{(\langle z, s \rangle - i0)^n}, \]
where \(x \in X \), \(s \neq 0 \), and
\[z = z(\omega) = \frac{\nabla \theta(x, \omega)}{|\nabla \theta(x, \omega)|}. \]

Consider the map \(\zeta : \Omega \to S^{n-1}, \omega \mapsto z(\omega) \), and choose an orientation of \(\Omega \). The invariant \(\text{deg} \ \zeta \) is well-defined and does not vanish because of (2). Replacing the variables \(\omega \) by \(z \in S^{n-1} \) on the right hand side of (21), we obtain
\[Z_n = \text{deg} \ \zeta \int_{\Omega} \frac{dz}{(\langle z, s \rangle - i0)^n}. \]

According to [11, Proposition 4.3], \(\text{Re} i^n Z_n = 0 \) for all \(n \geq 2 \). \[\square \]
Remark. The map z is proper and, by (2), is locally bijective. Choosing an orientation of Ω such that $\eta > 0$, we have $\deg \zeta > 0$ and $\deg \zeta = 1$ if $n > 2$.

Corollary 7.2. If Φ is a generating function as in Theorem 5.1 and $r_\rho = \eta$ is as in (19), then the operator $P_1 = D_{r_\rho}^{-1}Q_\rho$, where Q_ρ is as in (8)--(9) and D_{r_ρ} is as in (10), can be written in the form

$$P_1g(x) = \frac{\pi_n}{\deg \zeta} \int_{\Omega} \int_{\mathbb{R}} g^{(n-1)}(\lambda, \omega) d\lambda d\omega |\nabla \theta(x, \omega)|^n d\Omega(\omega)$$

for even n and in the form

$$P_1g(x) = \frac{\pi_n}{\deg \zeta} \int_{\Omega} g^{(n-1)}(\theta(x, \omega), \omega) |\nabla \theta(x, \omega)|^n d\Omega(\omega)$$

for odd n, where z is defined by (22).

Proof. By (10) and (20), we have

$$D_{r_\rho}(x) = \frac{1}{|S^{n-1}|} \int_{\Omega} \frac{\eta(x, \omega) d\Omega}{|\nabla \theta(x, \omega)|^n} = \frac{1}{|S^{n-1}|} \int_{\Omega} dz = \deg \zeta,$$

so (23) and (24) follow from (8) and (9).

In the next section, we show that P_1 is a 1-parametrix.

8 Calculation of a remainder

Theorem 8.1. Let X be an open set in euclidean space E^n, $\Phi = \theta - \lambda$ a regular generating function in $X \times \mathbb{R} \times \Omega$ of class C^κ, where $\kappa > n + 4$, and $r_\rho = \eta \in C^\kappa(X \times \Omega)$ as in (19). Then the operator P_1 is a 1-parametrix for M_r, and the remainder $R_1 = P_1M - \text{Id}$ is a 1-smoothing integral operator with leading term

$$b_1(x, s) = \frac{1}{D_{r_\rho}(x)} \begin{cases} n \text{ Re } q_1(x, s) & \text{for even } n \\ -n \text{ Im } q_1(x, s)/\pi & \text{for odd } n, \end{cases}$$

where

$$q_1(x, s) = \int \frac{\mu(x, s, \omega) \eta(x, \omega) d\Omega}{(|\nabla \theta(x, \omega), s| - i0)^{n+1}}, \quad \mu(x, s, \omega) = \frac{1}{2} \langle \nabla_x^2 \theta(x, \omega), s^2 \rangle.$$

Proof. By Propositions 6.1 and 7.1, for even n,

$$P_1M_r f(x) - f(x) = D_{r_\rho}^{-1}(x) \int \text{Re } \Theta(x, y) f(y) dV = D_{r_\rho}^{-1}(x) \int \text{Re } r_1(x, y) f(y) dV,$$
and the kernel r_1 defined in (16) satisfies (18); the same conclusion holds for odd n. Therefore, the function $D_{1,\rho}^{-1} \text{Re} r_1$ is the kernel of R_1 and q_0 vanishes.

We can specify the structure of r_1. First, applying the Lagrange formula for ξ, we have $\tilde{\xi}(x, s, \omega) = \mu(x, s, \omega) + \sigma(x, s, \omega)$, where the remainder σ satisfies an inequality like (14), with the power $|s|^3$ instead of $|s|^2$. Set

\[
p = \frac{\mu + \sigma}{(\nabla \theta(x, \omega), s) - i0}
\]

in the right hand side of (15) to obtain $r_1(x, y) = -nq_1(x) + r_2(x, s)$, where q_1 is as in (27) and the remainder r_2 admits an estimation like (18) with the factor $|s|^2$ instead of $|s|$ on the right hand side. The kernel q_1 is homogeneous of degree $1 - n$, which implies (26). By Proposition 10.4, r_1 is a 1-smoothing operator. □

Remarks. 1. Beylkin [1] has constructed a parametrix for M_r in terms of Fourier integral operators. His construction depends on the assumption that $\tilde{\theta}(x, -\omega) = -\tilde{\theta}(x, \omega)$, which is not satisfied in the case of photo-acoustic acquisition geometry.

2. Higher parametrices P_k and remainders R_k, $k = 2, 3, 4, \ldots$, can be calculated as in Section 2 by means of the Lagrange formula like (15) with more terms.

Proposition 8.2. Suppose that $\tilde{\theta}(x, \xi) \equiv |\xi|\theta(x, \xi/|\xi|)$ is a linear function of $\xi \in \mathbb{R}^n$ and that the function $\theta(y, \omega) - \theta(x, \omega)$ has at least one root $\omega \in \Omega$ for each $x \neq y \in X$ and $r = 1$. Then the parametrix P_1 coincides with the left inverse operator constructed in [11], namely,

\[
P_1 g(x) = \frac{\pi_n}{D_1(x)} \int_{\Omega} \int_{\mathbb{R}} g^{(n-1)}(\lambda, \omega) \frac{d\lambda d\omega}{\theta(x, \omega) - \lambda}
\]

for even n, and

\[
P_1 g(x) = \frac{\pi_n}{D_1(x)} \int_{\Omega} \frac{g^{(n-1)}(\lambda, \omega)}{|\lambda - \theta(x, \omega)|} d\omega
\]

for odd n.

Proof. We have

\[(n - 1)!\eta d\Omega \equiv \nabla \theta \wedge (d_\omega \nabla \theta)^{\wedge n-1} = |\xi|^{-n}(d_\xi \nabla \tilde{\theta})^{\wedge n}/d|\xi|,
\]

where $\omega = \xi/|\xi|$. The quotient $\rho \equiv (d_\xi \nabla \tilde{\theta})^{\wedge n}/d_\xi \tilde{\theta}$ does not depend on ξ since $\tilde{\theta}$ is a linear function of ξ. Therefore, the right hand side equals

\[
\rho(d_\xi \tilde{\theta})^{\wedge n}/d|\xi| = \rho d\Omega,
\]

that is, $\eta = \rho$; hence η does not depend on ω. Thus, the factor ρ in (8) cancels the same factor in the (10) for $D_{1,\rho}$. By [11, Theorem 3.1], it follows that (8) and (9)
with $\rho = 1$ and the factor $D_{\Gamma_1,\rho}^{-1}$ define a left inverse operator L to M_1. Therefore, the parametrix P_1 coincides with L. □

9 Photo-acoustic acquisition geometries

Let Γ be a hypersurface in euclidean space E^n, and let

$$ R_\Gamma f(r, \xi) = \int_{|x-\xi|=r} f dS, \quad \xi \in \Gamma, \quad r > 0, $$

be the corresponding spherical integral transform of a function f on E^n. The problem of inverting this transform has been studied for at least a decade in view of applications to photo-acoustic tomography. A special construction of a parametrix was proposed by Popov and Sushko [13] based on a reduction to the Radon transform. For an arbitrary spherical central surface Γ, Finch et. al. [4], [3] found exact reconstruction formulas. Other reconstruction formulas were given by Kunyansky [8] and Xu and Wang [15]. In [9], explicit reconstruction formulas were found for an arbitrary ellipsoid $\Gamma \subset E^3$, and in [11], a reconstruction is given for ellipsoids Γ in a space of arbitrary dimension. Natterer [9] showed that the same formula holds for an arbitrary convex surface Γ in E^3 up to an explicitly calculated remainder, and Haltmeier [5] did the same for E^2. It can be checked that the remainder does not vanish in the general case (in contrast with [7]). We prove below that the formulas in (29)-(30) below provide a 1-parametrix in arbitrary dimension. In three dimensional space, this coincides with the main term of Natterer’s formula up to a 1-smoothing operator, and the remainders in Natterer’s and Haltmeier’s formulas are also 1-smoothing operators. An exact reconstruction formula for the operator R_Γ is still known only for a narrow class of algebraic curves and surfaces [11].

Proposition 9.1. Let X be a compact convex domain in E^n with a boundary Γ parametrized by a smooth map of rank $n - 1 \, x = \xi(\omega), \, \omega \in \Omega$, where $\Omega = S^{n-1}$ is the unit sphere in euclidean space E^n. Then the generating function $\Phi(x; \lambda, \omega) = |x - \xi(\omega)| - \lambda$ defined in $X \times \mathbb{R}_+ \times \Omega$ is regular.

Proof. We have

$$ \eta d\Omega = \frac{1}{(n-1)!} \left(\frac{-1}{|x-\xi|} \right)^n (x-\xi) \wedge (d\xi)^{(n-1)} \neq 0, $$

since the map ξ has rank $n - 1$. This proves (2).

To prove (5), we consider the function

$$ \theta(y, \omega) - \theta(x, \omega) = |y - \xi(\omega)| - |x - \xi(\omega)| $$
and show that for \(x, y \in X, x \neq y \), each zero \(\omega \) of this function is simple. Indeed, were \(\omega \) a nonsimple zero, then we would have

\[
0 = \theta(y, \omega) - \theta(x, \omega) = d_\omega(\theta(y, \omega) - \theta(x, \omega)) = \frac{\langle x - y, d\xi \rangle}{|x - \xi(\omega)|^2}
\]

The second equation implies that the vector \(x - y \neq 0 \) is orthogonal to the tangent hyperplane \(T \) of \(\Gamma \) at \(\xi(\omega) \). By the first equation, \(x \) and \(y \) are the same distance to \(\xi(\omega) \) and are therefore symmetric with respect to \(T \). This is impossible, since \(X \) is convex and hence lies on one side of \(T \). \(\square \)

Corollary 9.2. For even \(n \),

\[
f(x) - S_1f(x) = \pi_n \int_\Omega \int \mathbb{R}_\Gamma f^{(n-1)}(\lambda, \omega) d\lambda \frac{dz}{|x - \xi| - \lambda},
\]

and for odd \(n \),

\[
f(x) - S_1f(x) = \pi_n \int_\Omega \mathbb{R}_\Gamma f^{(n-1)}(|x - \xi|, \xi) dz,
\]

where

\[
z = \frac{\xi - x}{|\xi - x|}, \quad dz = \frac{\cos \psi}{|x - \xi|^{n-1}} d\xi
\]

and \(S_1 \) is a 1-smoothing operator in \(X \).

Proof. We have \(|\nabla \theta| = 1 \), \(\nabla \theta(x, \omega) = z \); hence \(Rf = M_1f \), and we can apply Corollary 7.2. By (25), we have \(D_{1,\rho} = \deg z \) and \(\deg z = 1 \) for all \(x \in X \) since the map \(z : \Omega \to S^{n-1} \) is bijective. This yields \(D_{1,\rho}(x) = 1 \). \(\square \)

For the case \(n = 3 \), we obtain

\[
f(x) = \pi_3 \int_\Gamma \mathbb{R}_\Gamma f^{(2)}(|x - \xi|, \xi) \frac{\cos \psi}{|x - \xi|^2} d\xi + S_1f(x),
\]

where \(\mathbb{R}_\Gamma f^{(2)} = (\partial/\partial r)^2 \mathbb{R}_\Gamma f \). The first term coincides with that of the reconstruction [9], which is exact up to a 1-smoothing operator \(S_1 \).

10 Singular integral operators

Let \(E^n \) be euclidean space of dimension \(n \geq 1 \), and let \(a(x, s) \) be a locally bounded function on \(E^n \times (E^n \setminus \{0\}) \). Consider the integral transform \(A \) defined by

\[
Af(x) = \lim_{\varepsilon \to 0} \int_{|s| > \varepsilon} a(x, s)f(x + s) ds
\]

for functions \(f \in L_2(E^n)_{\text{comp}} \). Let \(\Omega \) be the unit sphere in \(E^n \).
Theorem 10.1. Let $a : E^n \times (E^n \setminus \{0\}) \to \mathbb{R}$ be a positively homogeneous function of degree $-n$ in the variable s for each x, locally bounded on $E^n \times \Omega$ satisfying

$$\int_{\Omega} a(x, s) d\Omega(s) = 0, \ x \in E^n,$$

where $d\Omega$ is the euclidean volume form on Ω. Then (31) defines a continuous operator $A : L^{2}_{\text{comp}} \to L^{2}_{\text{loc}}$.

This is a simplified version of the Calderón-Zygmund Theorem [2].

Lemma 10.2. Let $k \in \mathbb{Z}$ and $A_k : H^k \to H^{k-d}$ and $A_{k+1} : H^{k+1} \to H^{k+1-d}$ be bounded linear operators such that A_{k+1} is the restriction of A_k. Then for $k < \alpha < k + 1$, the restriction of A_k to H^α defines a bounded operator $A_\alpha : H^\alpha \to H^{\alpha-d}$ such that $\|A_\alpha\| \leq C \|A_k\|^{\alpha-k} \|A_{k+1}\|^{k+1-\alpha}$, where C depends only on X.

Proof. Since H^{k+1} is dense in H^k, the restrictions A_{k+1} and A_α are uniquely defined. The lemma follows from the fact that any Sobolev space H^α is a complex interpolation of spaces H^β and $H^{\beta+1}$, where $\beta < \alpha < \beta + 1$ and $\varepsilon = \alpha - \beta$ is the exponent of interpolation; see [14].

Let $D^i = (\partial/\partial x_1)^{i_1} \cdots (\partial/\partial x_n)^{i_n}$ and $D^i = \cdots$, where $i = (i_1, \ldots, i_n)$ is a multi-index.

Theorem 10.3. Let κ be a natural number and

$$a(x, s) = a_0(x, s) + r_1(x, s)$$

be a kernel supported in $X \times (E^n \setminus \{0\})$ of class C^κ, where for each x, $a_0(x, s)$ is a homogeneous function of s of degree $-n$ satisfying (32) and r_1 satisfies

$$\max_{i+j \leq \kappa} \max_{x \in X} |s|^{i+n} |D^i D^j r_1(x, s)| \leq C |s|,$$

for some constant C. Then for each compact set $X \subset E^n$ with boundary of class C^κ, A defines a bounded operator $L^2(X) \to L^2(X)$ of Sobolev order 0.

This operator is called a singular integral operator of class C^κ with principal term a_0.

Proof. We abbreviate $L^2 = L^2(X)$ and $H^\alpha = H^\alpha(X)$ for $\alpha \in \mathbb{R}$. Assume that $f \in H^\alpha$ for some natural number $\alpha \leq \kappa$ and apply a partial derivative D^j, $|j| \leq \alpha$, to Af to obtain

$$D^j Af(x) = \int D^j a(x, s) f(x + s) ds + \int a(x, s) D^j f(x + s) ds.$$
The kernel D^j_xa is a singular integral operator of class $C^{\kappa-a}$, and the first term is contained in $L_2(X)$ by the Calderón-Zygmund Theorem. The same is true for the second term since $D^jAf \in L_2$. This yields $D^jAf \in L_2$; hence $Af \in H^\alpha$.

If $\alpha \geq -\kappa$ is a negative integer, we use decreasing induction in α. An arbitrary function $f \in H^\alpha$ can be written in the form $f = D^jg_j$, where $g_j \in L_2$ and summation in j, $|j| = -\alpha$ is assumed. Reading (35) from right to left yields

$$Af(x) = \int a(x, s)D^jg_j(x + s)ds = D^jAg_j(x) - \int D^j_xa(x, s)g_j(x + s)ds.$$

The first term belongs to H^α since $Ag_j \in L_2$. The second term belongs to $L_2(X) \subset H^\alpha$ by the Calderón-Zygmund theorem, which implies $Af \in H^\alpha$.

If α is not an integer, we apply Lemma 10.2 to A.

Proposition 10.4. If a_1 is a function in $X \times (E^n \setminus \{0\})$ of class C^κ which is homogeneous in s of degree $l - n$ for some natural number $l < \kappa$, and r_{l+1} satisfies (34) with right hand side $C|s|^{\alpha+1}$, then the integral transform A with kernel $a = a_1 + r_{l+1}$ is an l-smoothing operator of class $C^{\kappa-1}$.

Proof. First claim that the function $a_0 \doteq D^j_xa_1$ satisfies (32) for every multiindex j, $|j| = l$. Indeed, consider the differential form $\nu = a_0d\Omega = D^j_xa_1d\Omega$ of degree $n - 1$ in $E^n \setminus \{0\}$ (x is fixed). This form is closed since a_0 is homogeneous of degree $-n$. We can write $D^j_x = (\partial/\partial s_k)D^j_x$ for some k and i, and have $a_0 = \partial b/\partial s_k$, $b = D^j_xa_1$. Suppose that $k > 1$, and consider the hyperplanes $H_{\pm,0} = \{s_1 = \pm1, 0\}$. The central projection $\pi(s) = s/|s|$ in $E^n \setminus \{0\}$ maps the set $H_+ \cup H_- \to \Omega \setminus H_0$. By Stokes’ Theorem, $\int_{\Omega \setminus H_0} \nu = \int_{H_+ \cup H_-} \nu$, since the form ν is closed and decreases sufficiently fast at ∞. The left hand side equals $\int_{\Omega} \nu$, while the right hand side vanishes since $\nu = \pm d(bds_2 \wedge \cdots \wedge \hat{d}s_k \wedge \cdots \wedge ds_n)$ in H_{\pm}. This establishes the claim.

Now, for simplicity, suppose that $l = 1$. Substituting $D^j_xf(x + s) = D^j_xf(x + s)$ for $|j| = 1$ in the second term of (35) and integrating by parts, we arrive at

$$D^jAf(x) = \int D^j_xa(x, s)f(x + s)ds - \int D^j_xa(x, s)f(x + s)ds.$$

The kernel $D^j_xa = D^j_xa_1 + D^j_xr_2$ satisfies (34) and hence by the Calderón-Zygmund Theorem, defines an operator of order 0. The kernel $D^j_xa = D^j_xa_1 + D^j_xr_2$ is of the form of (33), where $a_0 \doteq D^j_xa_1$ is homogeneous of degree $-n$ in s, and belongs to class $C^{\kappa-1}$. The function $r_1 = D^j_xr_2$ satisfies (34) with $\kappa - 1$ instead of κ. From the claim and the Calderón-Zygmund Theorem, we conclude that the second term of (36) also defines an operator of order 0. The same is true for operators D^j_xA, $|j| = 1$, which implies that A is a 1-smoothing operator.
REFERENCES

V. P. Palamodov
SCHOOL OF MATHEMATICAL SCIENCES
TEL AVIV UNIVERSITY
RAMAT AVIV TEL AVIV 6997801, ISRAEL
email: palamodo@post.tau.ac.il

(Received February 13, 2013 and in revised form November 24, 2013)