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Abstract. The objective of reconstructive integral geometry is to recover a
function from its integrals over a set of subvarieties. A parametrix is a method of
reconstruction of a function from its integral data up to a smoothing operator. In
the simplest case, a parametrix recovers a function with a jump singularity along
a curve (surface) up to a continuous function, which can be quite informative in
medical imaging. We provide an explicit construction for a wide class of acquisi-
tion geometries. The case of photo-acoustic geometry is of special interest.

1 Introduction

Let (X, g) be a Riemannian manifold and � be a family of smooth submanifolds
σ ⊂ X . For a function f defined in X with compact support, the family of integrals

(1) g(σ) =
∫
σ

f dgS, σ ∈ �

defines function on �. The family � is called the acquisition geometry of the
integral transform R� f

.
= g. An analytic inversion formula g �→ f is known only

for special types of acquisition geometries �; see the survey in [11]. Here, we
construct a parametrix for a class of weighted integral transforms R� for which
analytic reconstruction is not known (Sections 5–8).

A parametrix recovers not only the wave front of a function f but also the
profile of its singularity. A parametrix for a class of integral transforms was con-
structed earlier by Beylkin [1] in terms of Fourier integral operators. Pestov and
Uhlmann [12] gave a construction of a parametrix for the geodesic integral trans-
form on two-dimensional simple Riemannian manifolds.

In Section 9, we apply our construction for photo-acoustic (thermo-acoustic)
acquisition geometry. This topic was studied in papers of Popov and Sushko [13],
Kunyansky [8], Xu-Wang [15], Natterer [9], and in [11]. Our method is based
on the Calderón-Zygmund theory of singular integral operators adapted in Section
10.
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2 Parametrices in Sobolev spaces

Let X and Y be compact manifolds with boundaries of class C κ, where κ is a
natural number. The Sobolev spaces H α(X) and H α(Y ) are well-defined for every
real α, |α| < κ; see, e.g., [14]. We say that a densely defined operator
A : L2(X) → L2(Y ) has Sobolev order d ∈ R if it generates a bounded opera-
tor Aα : Hα(X) → H α−d (Y ) for every α, |α| < κ, |α − d | < κ, which is the
restriction of A for positive α and a closure of A for negative α. If d is negative, A
is called a d-smoothing operator. An operator P : L2(Y ) → L2(X) is said to be
an s-parametrix for A if 0 < s ≤ κ and PA = Id+R, where the remainder R is a s-
smoothing operator. If P1 is a 1-parametrix and R1 is a remainder, a k-parametrix
Pk can be found for any natural number k recursively by P k = Pk−1 − Rk−1P1,
Rk = −Rk−1R1 for k = 2, . . . , κ. Every 1-smoothing operator is compact in L2(X);
hence P1A is a Fredholm operator, and the image of A is closed. An s-parametrix
Ps recovers the singularity of an arbitrary function f ∈ H α(X) from A f up to a
function h = Rs f ∈ Hα+s(X). In particular, if f = δy is the delta-function at a
point y ∈ X and s > n, then h = Rsδy is continuous. In fact, δy ∈ Hα(X) for every
α < −n/2, which implies h ∈ H α+s(X). The space H α+s(X) is contained in C(X) if
α > n/2 − s; hence h is continuous. The equation PsAδy = δy + h shows that every
delta function can be recognized from data of Aδy by means of an s-parametrix Ps.

3 Generating functions and integrals

Let X and � be smooth n-dimensional manifolds, and � : X × � → R a C 2-
smooth real function such that d� �= 0 on the set Z = �−1(0). Let p : Z → X ,
π : Z → � be the natural projections. Suppose that

(2) det(dx,tdσ,τ(tτ�(x, σ))) �= 0,

where dx,t, dσ,τ are exterior differentials in the manifolds X × R and � × R,
respectively.

Proposition 3.1. Property (2) holds if and only if π has rank n and

p∗ : N ∗(Z) → T ∗(X) is a local diffeomorphism, where N ∗(Z) denotes the conor-
mal bundle of Z and p∗(x, σ; ξ, s) = (x, ξ ) ∈ T ∗(X).

For a proof, see [10, Proposition 1.1].
It follows that for each σ ∈ �, the set Z(σ) = π−1(σ) = {x : �(x, σ) = 0}

is a C1-hypersurface in X ; and for every point x ∈ X and tangent hyperplane
h ⊂ Tx(X), there exists a locally unique hypersurface Z(σ) through x tangent to h.
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The function� is called generating for the acquisition geometry {Z(σ) : σ ∈ �}.
Let dV be a volume form on X and ρ = ρ(x, σ) a continuous function on Z . We
define a weighted integral transform of the continuous function f with compact
support in X by

(3) Mr f (σ) =
∫

X
δ (�(x, σ))r(x, σ) f (x)dV.

The limit exists since dx� �= 0. We can write this integral in the form

(4) Mr f (σ) =
∫

Z(σ)
f (x)r(x, σ)q(x, σ),

where q = dV/dθ denotes an arbitrary (n−1)-differential form q such that d�∧q =
dV . An orientation is defined in a hypersurface Z(σ) by means of the form d x�,
and the integral over Z(σ) is well-defined.

Choose a volume form d� on � and interchange the roles of X and �, keep-
ing the same generating function �. The corresponding integral transform M ∗

r is
called the back projection operator. Note that condition (2) is symmetric, and
Proposition 3.2 holds also for the operator M ∗

r .
For a closed set K ⊂ X and a real α, we denote by H α

K (X) the subspace of
Hα(X) consisting of distributions with support in K . The subspace H α

L (�) of
Hα(�) is defined similarly.

Proposition 3.2. If � is a smooth generating function satisfying (2) and r is

a smooth function, then for any compact set K ⊂ X with smooth boundary, any
real α, and any smooth function φ with compact support in �,

‖φMr f ‖α+(n−1)/2 ≤ C‖ f ‖α, f ∈ Hα
K (X),

where C is a constant which does not depend on f . If the map p is proper, then the
operator Mr : H 0

K (X) → H 0
L (�) is densely defined, where L = πp−1(K ), and has

Sobolev order (1 − n)/2.

Proof. We can write the transform as a Fourier integral operator:

Mr f (σ) =
∫

K

∫
R

exp(2πıτ�(x, σ))r(x, σ) f (x)dτdV.

The critical set of the phase function τ�(x, σ) is the hypersurface F (σ), and the
condition dx� �= 0 implies that the phase function is non-degenerate. The corre-
sponding conic Lagrange variety is

L = {(x, σ; ξ, s) ∈ T ∗(X ×�) : �(x, σ) = 0, s = λdσ�, ξ = λdx�, λ �= 0}.
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The rank of the matrix ∂(x, ξ )/∂(σ, s) equals 2n at every point of L. This follows
from (2); for details, see [10, Lemma 3.2]. Therefore, projections of L to T ∗(X)
and to T ∗(�) are submersions, that is, L is locally the graph of a canonical trans-
formation. The symbol a(x, σ; ξ, s) = 1 is a homogeneous function of ξ, s of order
0. The order m of the Fourier integral operator Mr satisfies

m + dim X ×�/4 − N/2 = 0,

where dim X × � = 2n and N = 1 is the number of variables τ. This yields
m = (1 − n)/2, which means that the functional

ψ �→
∫
�

∫
X

∫
R

exp(2πıτ�(x, σ))r(x, σ)ψ(x, σ)dτdV d�

defined for smooth test densities ψ, is a distribution of the class I (1−n)/2(X ×�,L)
in the sense of Hörmander. By [6, Corollary 25.3.2], the operator φMr defines a
continuous map H α

K (X) → H α+(n−1)/2
F (�) for every real α, where F = suppφ.

If p is proper, the set L = π(p−1(K )) is compact, and we can choose a cut-off
function such that φ = 1 in L. Then φMr f = Mr f , and the second statement
follows. �

We say that a generating function� is resolved if � = R×�, where� is the
unit sphere in euclidean space E n and �(x, σ) = θ(x, ω) − λ, σ = (λ,ω), λ ∈ R,
ω ∈ � for a function θ ∈ C2(X × �). If � is resolved, the map p : Z → X is
proper since θ is continuous. It follows that Mr f has compact support in � if f

does.

Definition. We call a generating function� regular if it is resolved, satisfies
(2), and the equations

(5) θ(x, ω) = θ(y, ω), dωθ(x, ω) = dωθ(y, ω)

are satisfied simultaneously for no x �= y ∈ X , ω ∈ � (that is to say, the family
{Z(σ) : σ ∈ �} has no conjugate points.)

4 Principal value integrals

Let f be a smooth real function on a manifold X having only simple zeros, i.e.,
d f (x) �= 0 whenever f (x) = 0. For a natural number n, we consider the functional

(6) In(a) =
∫

X

a
( f − i0)n

= lim
ε↘0

∫
X

a
( f − iε)n

,
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defined for test densities a in X . For a real density a, the functional∫
X

a
f n

.
= Re In(a)

is called a principal value integral.

Proposition 4.1. For every smooth function f having only simple zeros, the

limit in (6) exists for every test density a. The functional In is a generalized function
in X.

Proof. For an arbitrary smooth function g, tangent field t, and test density a

in X ,
d(g ∧ (t � a)) = dg ∧ (t � a) + g d(t � a),

where the symbol � denotes the inner product of a field and a form. If a has
compact support, the integral of the left hand side over X vanishes, and

(7)
∫

t(g) a =
∫

(t � dg) ∧ a =
∫

dg ∧ (t � a) = −
∫

g d(t � a).

To prove the statement, choose a tangent field t1 and a smooth function t0 in
X such that t1( f ) + t0 f = 1, and apply induction in n ≥ 1. In the case n = 1, we
integrate by parts in (6) and apply (7) to obtain

I1(a) =
∫

(t1( f ) + t0 f )a
f − i0

=
∫

t1(log( f − i0))a +
∫

t0a

= −
∫

log( f − i0)d(t1 � a) +
∫

t0a,

where log( f − i0) is a locally integrable function.
For the case n > 1, we can write

In(a) =
∫

(t1( f ) + t0 f )a
( f − i0)n

=
1

1 − n

∫
t1[

1
( f − i0)n−1 ]a + In−1(t0a)

=
1

n − 1

∫
d(t1 � a)

( f − i0)n−1
+ In−1(t0a) = In−1(

d(t1 � a)
n − 1

+ t0a).

Here, the form d(t1 � a) is again a smooth density with compact support in X . �

5 Filtered back projection operator

Theorem 5.1. Let X be an open set in euclidean space E n, � = θ − λ a

smooth regular generating function on X ×R×� of class C κ, and ρ ∈ Cκ(X ×�),
where κ > n + 1. Define an operator by the principal value integral

(8) Qρg(x)
.
= πn(n − 1)!

∫
�

ρ(x, ω)g(λ,ω)dλ d�
(θ(x, ω) − λ)n
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for even n and by

(9) Qρg(x)
.
= πn

∫
�
ρ(x, ω)g(n−1)(θ(x, ω), ω)d�

for odd n ≥ 3, where g is a function defined on R ×�, g(n−1) = (∂/∂λ)n−1g, and
πn = −(2πi)−n for even n, πn = 2(2πi)1−n for odd n. Then

QρMr = Dr,ρId + Ar,ρ,

where

(10) Dr,ρ(x) =
1

|Sn−1|
∫
�

ρ(x, ω)r(x, ω)d�
|∇xθ(x, ω)|n .

Aρ is a singular integral operator of Sobolev order 0 with the kernel −(n−1)! Re�
if n even and 1/2π(n − 1)! Im� if n odd. Here, the singular integral

(11) �(x, y) =
∫
�

ρ(x, ω)r(y, ω)d�
(θ(y, ω) − θ(x, ω) − i0)n

is defined for x �= y ∈ X by the method of Section 4.

Lemma 5.2. The composition QρMr extends to a continuous operator
L2(X)comp → L2(X)loc.

Proof. For even n, integrating by parts in (8) yields

Qρg(x) = πn(n − 1)!
∫
�
ρ(x, ω)

∫
R

(θ(x, ω) − λ)−ng(λ,ω)dλdω,

that is,
Qρ = πn(n − 1)!M ∗

ρ (�n × Id),

where �n is the convolution operator in R with the principal value kernel λ−n

acting on the λ variable and

M∗
ρg(x) =

∫
�
ρ(x, ω)g(θ(x, ω), ω)dω

is a weighted back projection operator. By Proposition 3.2, the operator Mr is
bounded in the spaces H 0

K (X) → H (n−1)/2
L (�), where L = π(p−1(K )) is a com-

pact in � since p is proper. The convolution operator has a factorization � n =
Cn(∂/∂λ)n−1H, where H is a Hilbert operator and Cn is a constant. It follows that
for arbitrary α ∈ R, �n defines a bounded map H α(R) → H α−n+1(R). Taking α =
n−1, we conclude that�n×Id : H (n−1)/2

R×� (�) → H −(n−1)/2
R×� (�) is also bounded. By

[10, Proposition 3.1], M ∗
ρ is continuous as an operator H −(n−1)/2

R×� (�) → H 0
loc(X).
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Finally, M∗
ρ (�n × Id)Mr is continuous as an operator L2(X)comp → L2(X)loc, and

the statement follows.

In the case of odd n, there exists a similar factorization with�n = Cn(∂/∂λ)n−1,
which leads to the same conclusion. �

Lemma 5.3. For even n, arbitrary x ∈ X, ω ∈ �, and small ε,

dn,ε(x, ω)
.
= − (n − 1)!

(2πi)n−1
Re

∫
X

ρ(x, ω)r(y, ω)eε(s)dV (y)
(θ(y, ω) − θ(x, ω) − i0)n

=
1

|Sn−1|
ρ(x, ω)r(x, ω)
|∇θ(x, ω)|n + o(1),

(12)

where o(1) → 0 as ε → 0. For odd n,

dn,ε(x, ω)
.
=

(n − 1)!
(2πi)n−1

Im
∫

X

ρ(x, ω)r(y, ω)eε(s)dV
(θ(y, ω) − θ(x, ω) − i0)n

=
2ρ(x, ω)r(x, ω)

|Sn−1||∇θ(x, ω)|n + O(ε),

where s = y − x.

Proof. The proof follows along the lines of [11, Lemma 3.3]. �

Proof of Theorem 5.1. We have

dn (x) = lim
ε→0

∫
�

dn,ε (x, ω) d�.

Taking the limit and integrating (12) over� we obtain, for even n,

dn (x) =
1∣∣Sn−1

∣∣
∫
�

ρ (x, ω) r (x, ω) d�
|∇θ (x, ω)|n = Dr,ρ (x) ,

which implies (10). For odd n, we again obtain dn = Dr,ρ, and (10) follows.

Fixing a point x ∈ X and setting fε(y) = eε(y − x) f (y) for a C n-function f in X
gives

QρMr( fε)(x) = cn

∫
�

ρMr( fε)dλd�
(θ − λ)n

= cn Re
∫

X

ρ(x, ω)r(y, ω)eε(y − x) f (y)dV (y)
(θ(y, ω) − θ(x, ω) − i0)n

,

where cn = πn(n − 1)!. By Lemma 5.3, the right hand side tends to Dr,ρ(x) f (x) as
ε→ 0. The operator f �→ Dr,ρ f acting in L2(X)comp is obviously bounded; and by
Lemma 5.2, the residue Ar,ρ = QρMr − Dr,ρId is the off-diagonal kernel of QρMr

and is a bounded operator L2(X)comp(X) → L2(X)loc. Take an arbitrary function
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f ∈ L2(X)comp that vanishes in a neighborhood of x and calculate

QρMr f (x) = cn

∫
�

Mr f (λ,ω)dλρ(x, ω)d�
(θ(x, ω) − λ)n

= cn

∫
�
ρ(x, ω)d�

∫
R

dλ
(θ(x, ω) − λ)n

∫
Z(λ,ω)

r(y, ω) f (y)q

= cn

∫
X

(∫
�

ρ(x, ω)r(y, ω)d�
(θ(x, ω) − θ(y, ω))n

)
f (y)dθ ∧ q

= cn

∫
X

Re�(x, y) f (y)dV,

where we have applied (4) and � is as in (11). The relation dλ = dθ holds in Z ,
and the equation dθ ∧ q = dV is satisfied in X , by definition. Thus the function
−cn Re� is the off-diagonal kernel of the operator QρMr . A similar equation
holds for odd n with the kernel Im�. �

6 Off-diagonal kernel

Proposition 6.1. Under the assumptions of Theorem 5.1, the operator
Ar,ρ = QρMr − Dr,ρId is a singular integral operator of Sobolev order 0 with

leading term

a0(x, s) =

⎧⎨
⎩ Re q0(x, s) for even n,

− Im q0(x, s)/π for odd n,

where

(13) q0(x, s) = −(n − 1)!
∫
�

ρ(x, ω)r(x, ω)d�
(〈∇θ(x, ω), s〉− i0)n

, s = y − x.

Proof. We show that the kernel � defines an operator of Sobolev order 0.
Applying the Lagrange formula to θ(y, ω) at y = x and estimating the remainder,
we get

θ(y, ω) − θ(x, ω) = 〈∇θ(x, ω), s〉 + ξ (x, s, ω),

where

(14) max|i|+| j |≤κ−2
max
x∈K

max
ω

|s||i||Di
sD j

x ξ (x, s, ω)| ≤ CK |s|2.

For F (p) = (1 − p)−n, the Lagrange formula yields

(15) (1 + p)−n = 1−np
∫ 1

0
(1 + tp)−n−1dt = 1−np +

n(n + 1)
2

p2
∫ 1

0
(1 + tp)−n−2dt.
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Taking p = ξ (x, s, ω)(〈∇θ(x, ω), s〉− i0)−1 and multiplying by

(〈∇θ(x, ω), s〉− i0)−n

yields

1
(θ(y, ω) − θ(x, ω) − i0)n

=
1

(〈∇θ(x, ω), s〉− i0)n
− n

∫ 1

0

ξdt
(〈∇θ(x, ω), s〉 + tξ − i0)n+1

.

Integrating against the density ρ(x, ω)r(y, ω)d� yields

�(x, y) =
∫

ρ(x, ω)r(y, ω)d�
(θ(y, ω) − θ(x, ω) − i0)n

= q0(x, s) + r1(x, s),

where the first term on the right hand side is as in (13) and

r1(x, s) = −n
∫ 1

0
dt

∫
�

ξ (x, s, ω)ρ(x, ω)r(x, ω)d�
(〈∇θ(x, ω), s〉 + tξ − i0)n+1

+
∫
ρ(x, ω)r(y, ω) − r(x, ω)d�
(θ(y, ω) − θ(x, ω) − i0)n

.

(16)

For each i = 1, 2, . . . , n, we can find a smooth function t0i and a smooth tan-
gent field t1i in � such that t0i∇xθ + t1i (∇xθ) = ei , where the gradient ∇xθ is
viewed as a column vector and ei is the i-th column of the unit n × n-matrix. For
a local construction, we use columns of the inverse to the matrix⎛

⎜⎜⎜⎜⎝
θ1 ∂ω1θ1 · · · ∂ωn−1θ1

θ2 ∂ω1θ2 · · · ∂ωn−1θ2
...

...
...

...
θn ∂ω1θn · · · ∂ωn−1θn

⎞
⎟⎟⎟⎟⎠ ,

where θk = ∂θ/∂xk, k = 1, . . . , n. By (2), this matrix is invertible for any local
coordinate system ω1, . . . , ωn−1 in �. We extend the functions t0i and fields t1i

to the whole sphere by means of a partition of unity. Consider the differential
operator

t0 + t1, t0 = |s|−2
n∑
1

si t0i , t1 = |s|−2
∑

si t1i ,

where t0 is a function and t1 is a tangent field on the sphere with coefficient de-
pending on s. Consider the function ν = v(x, s)

.
= 〈∇θ(x, ω), s〉− i0. We have

t0v + t1(v) = |s|−2
∑

s2
i = 1.
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Therefore τ−k(ν−k) = (t0v + k−1t1(v))v−k−1 = ν−k−1 for an arbitrary integer k �= 0,
where τ−k = t0 + k−1t1 and t0 + t1(log ν) = ν−1. Integration by parts yields

q0 =
∫
�
ρv−nd� =

∫
�
τ1−n(ν1−n)ρd� =

1
1 − n

∫
�
ν1−nτ∗1−n(ρ)d�,

where τ∗k is the adjoint differential operator to τk which is a homogeneous function
of s of degree −1. Integrating by parts n times, we obtain

q0(s) = · · · = bn

∫
�
ν−1τ∗−1(· · · τ∗1−n(ρ))d�

= bn

∫
�

[log ν t∗1 + t0]τ∗−1(· · · τ∗1−n(ρ))d�,
(17)

where bn = (−1)n−1/(n − 1)!. The function t∗1τ∗−1(· · · τ∗1−n(ρ)) as well as the func-
tion t0τ∗−1(· · · τ∗1−n(ρ)) has homogeneous coefficients of degree −n with respect
to s. We check that the integral (17) is a homogeneous function of degree −n.
Indeed,

log ν = log(ν/|s|) + log |s|,
where the first term in the right hand side is homogeneous of degree 0 and the
second term vanishes since∫

t∗1τ
∗
−1(. . . τ∗1−n(ρ)) log |s|d� =

∫
τ∗−1(. . . τ∗1−n(ρ))t1(log |s|)d� = 0

and log |s| does not depend on ω. This proves that the kernel q0 is homogeneous
in s of degree −n. To get a bounded kernel in the right hand side of (17), we
integrate by parts one more time and obtain an integral with bounded kernel ν log ν.
Integrating by parts again, we get, for an arbitrary natural number κ ≥ n + 1,

max
i+ j≤κ−n−1

max
x∈K

|s|n+i |Di
sD j

x q0(x, s)| ≤ CK , s �= 0

for an arbitrary compact set K ⊂ X . Similar arguments applied to (16) show that
for sufficiently small ε and |s| < ε,
(18) max

i+ j≤κ−n−1
max
x∈K

|s|n+i |Di
sD j

x r1(x, s)| ≤ CK |s|, s �= 0.

Therefore, the right hand side of (11) has the structure of equations (33)–(34)
below with principal term (13).

To show that the kernel Re(i nq0) satisfies (32), we invoke the following fact,
whose proof is given in [11, Lemma 4.3].

Proposition 6.2. Let v ∈ R
n and a ∈ R be such that |a| < |v |. Then for even

n ≥ 2,

Re
∫
�

ind�
(〈s, v〉− a − i0)n

= 0,

where d� is the euclidean volume form on the unit sphere� in R
n.
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This yields

Re
∫
�

ind�
(〈∇θ(x, ω), s〉− i0)n

= 0

for all x ∈ X . Integrating over� and changing the order of integrals yields

Re
∫
�

inq0(x, s)d� = 0,

which completes the proof of Proposition 6.1. �

7 Vanishing of the off-diagonal kernel and parametrix

Assume that� is oriented by the volume form d�. A key point of our construction
is the following proposition.

Proposition 7.1. The integral (13) vanishes if η = rρ satisfies

(19) η(x, ω) d� =
1

(n − 1)!
∇θ ∧ (dω∇θ)∧n−1.

Proof. Fix x ∈ X and consider the hypersurface

H = Im{∇θ(x, ·) : � → E n}.
Equation (19) can be written in the form η(x, ω)d� = ∇θ ∧ dh, where the differ-
ential form dh = 1/(n − 1)!(dω∇θ)∧n−1 is the euclidean area form of H expressed
in coordinates ω. Define z : H → Sn−1 by z(h) = h/|h|. Then

(20) η(x, ω)d� = ∇θ ∧ dh = |∇θ|ndz,

where dz is the area form of Sn−1. This yields

(21)
∫
�

η(x, ω)d�
(〈∇θ(x, ω), s〉− i0)n

=
∫
�

dz(ω)
(〈z, s〉− i0)n

,

where x ∈ X , s �= 0, and

(22) z = z(ω) =
∇θ(x, ω)
|∇θ(x, ω)| .

Consider the map ζ : � → Sn−1, ω �→ z(ω), and choose an orientation of �. The
invariant deg ζ is well-defined and does not vanish because of (2). Replacing the
variables ω by z ∈ Sn−1 on the right hand side of (21), we obtain

Zn
.
= deg ζ

∫
�

dz
(〈z, s〉− i0)n

.

According to [11, Proposition 4.3], Re i nZn = 0 for all n ≥ 2. �
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Remark. The map z is proper and, by (2), is locally bijective. Choosing an
orientation of � such that η > 0, we have deg ζ > 0 and deg ζ = 1 if n > 2.

Corollary 7.2. If � is a generating function as in Theorem 5.1 and rρ = η is

as in (19), then the operator P1 = D−1
r,ρ Qρ, where Qρ is as in (8)–(9) and Dr,ρ is as

in (10), can be written in the form

(23) P1g(x) =
πn

deg ζ

∫
�

∫
R

g(n−1)(λ,ω)dλ
θ(x, ω) − λ

|∇θ(x, ω)|ndz(ω)

for even n and in the form

(24) P1g(x) =
πn

deg ζ

∫
�

g(n−1)(θ(x, ω), ω)|∇θ(x, ω)|ndz(ω)

for odd n, where z is defined by (22).

Proof. By (10) and (20), we have

(25) Dr,ρ(x) =
1

|Sn−1|
∫
�

η(x, ω)d�
|∇θ(x, ω)|n =

1
|Sn−1|

∫
�

dz = deg ζ ;

so (23) and (24) follow from (8) and (9). �
In the next section, we show that P1 is a 1-parametrix.

8 Calculation of a remainder

Theorem 8.1. Let X be an open set in euclidean space E n, � = θ − λ a

regular generating function in X × R × � of class Cκ, where κ > n + 4, and
rρ = η ∈ Cκ(X × �) as in (19). Then the operator P1 is a 1-parametrix for Mr,

and the remainder R1 = P1M − Id is a 1-smoothing integral operator with leading
term

(26) b1(x, s) =
1

Dr,ρ(x)

⎧⎨
⎩ n Re q1(x, s) for even n

−n Im q1(x, s)/π for odd n,

where

(27) q1(x, s) =
∫

μ(x, s, ω)η(x, ω)d�
(〈∇θ(x, ω), s〉− i0)n+1 , μ(x, s, ω) =

1
2
〈∇2

xθ(x, ω), s2〉.

Proof. By Propositions 6.1 and 7.1, for even n,

P1Mr f (x) − f (x) = D−1
r,ρ (x)

∫
Re�(x, y) f (y)dV = D−1

r,ρ (x)
∫

Re r1(x, y) f (y)dV,
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and the kernel r1 defined in (16) satisfies (18); the same conclusion holds for odd
n. Therefore, the function D −1

r,ρ Re r1 is the kernel of R1 and q0 vanishes.
We can specify the structure of r1. First, applying the Lagrange formula for

ξ , we have ξ (x, s, ω) = μ(x, s, ω) + σ(x, s, ω), where the remainder σ satisfies an
inequality like (14), with the power |s|3 instead of |s|2. Set

p =
μ + σ

〈∇θ(x, ω), s〉− i0

in the right hand side of (15) to obtain r1(x, y) = −nq1(x, s) + r2(x, s) , where q1

is as in (27) and the remainder r2 admits an estimation like (18) with the factor
|s|2 instead of |s| on the right hand side. The kernel q1 is homogeneous of degree
1 − n, which implies (26). By Proposition 10.4, r1 is a 1-smoothing operator. �

Remarks. 1. Beylkin [1] has constructed a parametrix for Mr in terms of
Fourier integral operators. His construction depends on the assumption that
θ(x,−ω) = −θ(x, ω), which is not satisfied in the case of photo-acoustic acquisi-
tion geometry.

2. Higher parametrices Pk and remainders Rk, k = 2, 3, 4, . . ., can be calcu-
lated as in Section 2 by means of the Lagrange formula like (15) with more terms.

Proposition 8.2. Suppose that θ̃(x, ξ )
.
= |ξ |θ(x, ξ/|ξ |) is a linear function of

ξ ∈ R
n and that the function θ(y, ω) − θ(x, ω) has at least one root ω ∈ � for

each x �= y ∈ X and r = 1. Then the parametrix P1 coincides with the left inverse

operator constructed in [11], namely,

P1g(x) =
πn

D1(x)

∫
�

∫
R

g(n−1)(λ,ω)
dλdω

θ(x, ω) − λ

for even n, and

P1g(x) =
πn

D1(x)

∫
�
.g(n−1)(λ,ω)|λ=θ(x,ω)dω

for odd n.

Proof. We have

(n − 1)!ηd�
.
= ∇θ ∧ (dω∇θ)∧n−1 = |ξ |−n(dξ∇θ̃)∧n/d|ξ |,

where ω = ξ/|ξ |. The quotient ρ
.
= (dξ∇θ̃)∧n/dξ1 ∧ · · · ∧ dξn does not depend on

ξ since θ̃ is a linear function of ξ . Therefore, the right hand side equals

ρ(dξ1 ∧ ... ∧ dξn)/d|ξ | = ρd�,

that is, η = ρ; hence η does not depend on ω. Thus, the factor ρ in (8) cancels the
same factor in the (10) for D1,ρ. By [11, Theorem 3.1], it follows that (8) and (9)
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with ρ = 1 and the factor D−1
1,ρ define a left inverse operator L to M1. Therefore,

the parametrix P1 coincides with L. �

9 Photo-acoustic acquisition geometries

Let � be a hypersurface in euclidean space E n, and let

R� f (r, ξ ) =
∫

|x−ξ |=r
f dS, ξ ∈ �, r > 0,

be the corresponding spherical integral transform of a function f on E n. The prob-
lem of inverting this transform has been studied for at least a decade in view of
applications to photo-acoustic tomography. A special construction of a parametrix
was proposed by Popov and Sushko [13] based on a reduction to the Radon trans-
form. For an arbitrary spherical central surface �, Finch et. al. [4], [3] found
exact reconstruction formulas. Other reconstruction formulas were given by
Kunyansky [8] and Xu and Wang [15]. In [9], explicit reconstruction formulas
were found for an arbitrary ellipsoid � ⊂ E 3, and in [11], a reconstruction is given
for ellipsoids � in a space of arbitrary dimension. Natterer [9] showed that the
same formula holds for an arbitrary convex surface � in E 3 up to an explicitly
calculated remainder, and Haltmeier [5] did the same for E 2. It can be checked
that the remainder does not vanish in the general case (in contrast with [7]). We
prove below that the formulas in (29)-(30) below provide a 1-parametrix in arbi-
trary dimension. In three dimensional space, this coincides with the main term of
Natterer’s formula up to a 1-smoothing operator, and the remainders in Natterer’s
and Haltmeier’s formulas are also 1-smoothing operators. An exact reconstruction
formula for the operator R� is still known only for a narrow class of algebraic
curves and surfaces [11].

Proposition 9.1. Let X be a compact convex domain in E n with a boundary�
parametrized by a smooth map of rank n − 1 x = ξ (ω), ω ∈ �, where� = Sn−1 is

the unit sphere in euclidean space E n. Then the generating function �(x;λ,ω) =
|x − ξ (ω)| − λ defined in X × R+ ×� is regular.

Proof. We have

ηd� =
1

(n − 1)!

( −1
|x − ξ |

)n

(x − ξ ) ∧ (dξ )∧(n−1) �= 0,

since the map ξ has rank n − 1. This proves (2).
To prove (5), we consider the function

θ(y, ω) − θ(x, ω) = |y − ξ (ω)| − |x − ξ (ω)|
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and show that for x, y ∈ X , x �= y, each zero ω of this function is simple. Indeed,
were ω a nonsimple zero, then we would have

(28) 0 = θ(y, ω) − θ(x, ω) = dω(θ(y, ω) − θ(x, ω)) =
〈x − y, dξ〉
|x − ξ (ω)|2

The second equation implies that the vector x − y �= 0 is orthogonal to the tangent
hyperplane T of � at ξ (ω). By the first equation, x and y are the same distance to
ξ (ω) and are therefore symmetric with respect to T . This is impossible, since X is
convex and hence lies on one side of T . �

Corollary 9.2. For even n,

(29) f (x) − S1 f (x) = πn

∫
�

∫
R

R� f (n−1)(λ,ω)dλ
|x − ξ | − λ

dz, ;

and for odd n,

(30) f (x) − S1 f (x) = πn

∫
�

R� f (n−1)(|x − ξ |, ξ )dz,

where

z =
ξ − x
|ξ − x| , dz =

cosψ
|x − ξ |n−1 dξ

and S1 is a 1-smoothing operator in X.

Proof. We have |∇θ| = 1, ∇θ(x, ω) = z; hence R f = M1 f , and we can apply
Corollary 7.2. By (25), we have D1,ρ = deg z and deg z = 1 for all x ∈ X since the
map z : � → Sn−1 is bijective. This yields D1,ρ(x) = 1. �

For the case n = 3, we obtain

f (x) = π3

∫
�

R� f (2)(|x − ξ |, ξ )
cosψ

|x − ξ |2 dξ + S1 f (x),

where R� f (2) = (∂/∂r)2R� f . The first term coincides with that of the reconstruc-
tion [9], which is exact up to a 1-smoothing operator S1.

10 Singular integral operators

Let En be euclidean space of dimension n ≥ 1, and let a(x, s) be a locally bounded
function on E n × (En \ {0}). Consider the integral transform A defined by

(31) A f (x) = lim
ε→0

∫
|s|>ε

a(x, s) f (x + s)ds

for functions f ∈ L2(En)comp. Let � be the unit sphere in E n.
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Theorem 10.1. Let a : E n × (En \ {0}) → R be a positively homogeneous

function of degree −n in the variable s for each x, locally bounded on E n × �

satisfying

(32)
∫
�

a(x, s)d�(s) = 0, x ∈ E n,

where d� is the euclidean volume form on �. Then (31) defines a continuous
operator A : L2comp → L2loc.

This is a simplified version of the Calderón-Zygmund Theorem [2].

Lemma 10.2. Let k ∈ Z and Ak : H k → H k−d and Ak+1 : H k+1 → H k+1−d be

bounded linear operators such that Ak+1 is the restriction of Ak. Then for k < α <
k + 1, the restriction of Ak to Hα defines a bounded operator Aα : Hα → Hα−d

such that ‖Aα‖ ≤ C‖Ak‖α−k‖Ak+1‖k+1−α, where C depends only on X.

Proof. Since H k+1 is dense in H k, the restrictions Ak+1 and Aα are uniquely
defined. The lemma follows from the fact that any Sobolev space H α is a complex
interpolation of spaces H β and H β+1, where β < α < β + 1 and ε = α − β is the
exponent of interpolation; see [14]. �

Let Di
x = (∂/∂x1)i1 · · · (∂/∂xn)in and Di

s = · · · , where i = (i1, . . . in) is a multiin-
dex.

Theorem 10.3. Let κ be a natural number and

(33) a(x, s) = a0(x, s) + r1(x, s)

be a kernel supported in X × (E n \ {0}) of class Cκ, where for each x, a0(x, s) is a

homogeneous function of s of degree −n satisfying (32) and r1 satisfies

(34) max
i+ j≤κmax

x∈X
|s|i+n|Di

sD j
x r1(x, s)| ≤ C|s|,

for some constant C. Then for each compact set X ⊂ E n with boundary of class
Cκ, A defines a bounded operator L2(X) → L2(X) of Sobolev order 0.

This operator is called a singular integral operator of class C κ with prin-
cipal term a0.

Proof. We abbreviate L2 = L2(X) and H α = H α(X) for α ∈ R. Assume that
f ∈ Hα for some natural number α ≤ κ and apply a partial derivative D j , | j | ≤ α,
to A f to obtain

(35) D j A f (x) =
∫

D j
x a(x, s) f (x + s)ds +

∫
a(x, s)D j f (x + s)ds.
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The kernel D j
x a is a singular integral operator of class C κ−α, and the first term is

contained in L2(X) by the Calderón-Zygmund Theorem. The same is true for the
second term since D j f ∈ L2. This yields D j A f ∈ L2; hence A f ∈ H α.

If α ≥ −κ is a negative integer, we use decreasing induction in α. An arbitrary
function f ∈ H α can be written in the form f = D j g j , where g j ∈ L2 and
summation in j, | j | = −α is assumed. Reading (35) from right to left yields

A f (x) =
∫

a(x, s)D j g j (x + s)ds = D j Ag j (x) −
∫

D j
x a(x, s)g j (x + s)ds.

The first term belongs to H α since Ag j ∈ L2. The second term belongs to
L2(X) ⊂ H α by the Calderón-Zygmund theorem, which implies A f ∈ H α.

If α is not an integer. we apply Lemma 10.2 to A. �

Proposition 10.4. If al is a function in X × (En \ {0}) of class Cκ which

is homogeneous in s of degree l − n for some natural number l < κ, and r l+1

satisfies (34) with right hand side C|s| l+1, then the integral transform A with kernel

a = al + rl+1 is an l-smoothing operator of class Cκ−1.

Proof. First claim that the function a0
.
= D j

s a1 satisfies (32) for every mul-
tiindex j , | j | = l. Indeed, consider the differential form υ = a0d� = D j

s ald�
of degree n − 1 in E n \ {0} (x is fixed). This form is closed since a0 is homo-
geneous of degree −n. We can write D j

s = (∂/∂sk)Di
s for some k and i , and

have a0 = ∂b/∂sk, b = Dial. Suppose that k > 1, and consider the hyperplanes
H±,0 = {s1 = ±1, 0}. The central projection π(s) = s/|s| in E n \ {0} maps the set
H+ ∪ H− to � \ H0. By Stokes’ Theorem,

∫
�\H0

υ =
∫

H+∪H− υ, since the form υ is
closed and decreases sufficiently fast at ∞. The left hand side equals

∫
� υ, while

the right hand side vanishes since υ = ±d(bds2 ∧· · ·∧ d̂sk ∧· · ·∧dsn) in H±. This
establishes the claim.

Now, for simplicity, suppose that l = 1. Substituting D j
x f (x + s) = D j

s f (x + s)
for | j | = 1 in the second term of (35) and integrating by parts, we arrive at

(36) D j A f (x) =
∫

D j
x a(x, s) f (x + s) ds −

∫
D j

s a(x, s) f (x + s) ds.

The kernel D j
x a = D j

s a1 +D j
s r2 satisfies (34) and hence by the Calderón-Zygmund

Theorem, defines an operator of order 0. The kernel D j
s a = D j

s a1 + D j
s r2 is of the

form of (33), where a0
.
= D j

s a1 is homogeneous of degree −n in s, and belongs to
class Cκ−1. The function r1 = D j

s r2 satisfies (34) with κ − 1 instead of κ. From
the claim and the Calderón-Zygmund Theorem, we conclude that the second term
of (36) also defines an operator of order 0. The same is true for operators D j A,
| j | = 1, which implies that A is a 1-smoothing operator. �
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