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Motivation

Benjamini and Schramm 2001

Q: What does a random walk on a random planar map look like?
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UIPT (Angel–Schramm, 2003): local limit of random
triangulations with n faces, n→∞.

Motivation

Ambjørn, Watabiki (nonrigourous): “Spectral dim of LQG” = 2
i.e., pt(x , x) ≈ 1/t.



Some remarkable results

Theorem (Benjamini and Schramm (2001))

Subject to bounded degree, every local limit of a sequence of
planar maps (rooted at a randomly chosen vertex) is recurrent.

Theorem (Gurel-Gurevitch and Nachmias (2013))

Exponential tail on degree suffices. In particular, UIPT is
recurrent.

See Nachmias’ Saint Flour notes for recent survey.

This talk: scaling limits of random walks.



DDK Ansatz (cf. Duplantier–Sheffield)

Metric of the form

ds2 = eγh(dx2 + dy2).

where γ ∈ R↔ central charge; h is the Gaussian free field.

Gaussian free field
A random “function” D → R

(h, f ) ∼ N (0, σ2);

σ2 =
x

G (x , y)f (x)f (y)dxdy

where G = Green function on
D.



Continuum theory ???

That gives h(z), but what about eγh(z)?

Three objects:
A Riemannian metric on sphere
S2 or domain D ⊂ C

A volume measure

A diffusion (Brownian motion
on surface)

eγh(z)(dx2 + dy2)

eγh(z)dz

dZt = e−
γ
2 h(Zs)dBs .



Continuum theory !!!

Three objects:
A (Riemannian) metric on the
sphere S2 or domain D ⊂ C

A volume measure

A diffusion (Brownian motion
on surface)

e
γ

dγ
h(z)

(dx2 + dy2)

eγh(z)dz

dZt = e−
γ
2 h(Zs)dBs .

V∗

V

V

∗: announced in 2019 by Gwynne–Miller x5;
Dubédat–Falconnet–Gwynne–Pfeffer–Sun
For γ =

√
8/3, already known by Miller–Sheffield.



Continuum theory: volume measure

Consider a regularisation hε(z), e.g., the circle average value of h.

Theorem (Kahane 1985; Duplantier–Sheffield 2010; Shamov
2017; B. 2017)

Define:

µγ(S) = lim
ε→0

εγ
2/2

∫
S
eγhε(z)dz

exists in probability.
µγ is Gaussian multiplicative chaos associated to GFF.



Visualisation of Liouville measure

γ = 0.2
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Visualisation of Liouville measure

γ = 1
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Visualisation of Liouville measure

γ = 1.8
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Liouville Brownian motion

Question:

How to define a canonical Brownian motion in this surface?

• In Riemannian case, metric defines smooth “connection”
• This induces a Laplace–Beltrami operator ∆.
• Brownian motion on manifold defined in terms of ∆.

Problem

Here none of these tools apply. We have to invent something else!



Liouville Brownian motion

Instead we have to do a regularisation procedure again.

Theorem (B. 2015, Garban–Rhodes–Vargas 2018)

The ε-regularised Brownian motion converges to a process,
Liouville Brownian motion.

ε-regularised Liouville Brownian motion:

dZ εs = εγ
2/4e−

γ
2 hε(Zs)dBs

In other words,

Z εs = Bφ−1
ε (t);φε(t) = εγ

2/2

∫ t

0
eγhε(Bs)ds

Then limε→0 Z
ε
s exists (i.e., limε→0 φε(t) exists).



Liouville Brownian motion

Properties (Garban, Rhodes, Vargas, B., Jackson)

• Continuous; does not stay stuck
• µh is a.s. an invariant measure for Liouville Brownian motion
given h.
• Spends all its time in a set of measure zero.
• for γ >

√
2, the trajectory has zero derivative at almost every

time.
• Spectral dimension ds = 2 a.s. (→ Ambjørn).
• ...



Connection between discrete and continuum theories?

• Two stories should be “two sides of same coin”.

• Need good embedding of planar maps in Euclidean space:

• Riemann mapping theorem, or Circle Packing theorem of
Koebe–Andreev–Thurston; or Tutte embedding ∗.

∗ two cases: infinite maps / finite maps with boundary.



Tutte embedding
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A big conjecture.

Let Tn = uniform random triangulation,
ψ : Tn → C some nice embedding (circle packing, Tutte)
Let µn = measure putting mass 1/n at each centre.

Conjecture

µn converges in distribution to Liouville measure with γ =
√

8/3.
Moreover, if X = SRW on Tn then ψ(X ) converges to Liouville
Brownian motion.



Main result

The punchline

Jointly with Ewain Gwynne we prove the first such result for a
class of planar maps called mated-CRT planar maps.

Mated-CRT planar maps

• Nice discretisations of LQG;
• Coarse-grained versions of more natural models of planar maps
(such as UIPT for γ =

√
8/3).



Mated-CRT maps

Two flavours

Finite; with boundary → disc topology;
or infinite; no boundary → spherical topology (=whole plane)

Each case has two equivalent descriptions:

I using SLE/LQG theory

I or as topological gluing of a pair of CRTs.

(Equivalence: Duplantier–Miller–Sheffield.)



Description 1 (full plane)

Fix γ ∈ (0, 2).
Let h = quantum cone: roughly, h = GFF + γ log(1/|z |) in C.
Let η = space-filling SLEκ where κ = 16/γ2 ∈ (4,∞).
For any ε > 0, break C into cells η([tn, tn+1]) of µh-mass ε.
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Gε: adjacency graph.



Description 2

Let (L,R) be a pair of correlated two-sided Brownian motions;

Cov(Lt ,Rt) = − cos(4π
γ2

)|t|.

Glue the associated CRTs to one another...

Bijections (Sheffield, Bernardi, Holden–Sun,...)

Natural models of planar maps close to Description 2



Statement of result

Let X z,ε = RW from z on Gε. Rescaling

mε :=
(
median exit time of η(X 0,ε) from B1/2

)
We can show mε � ε−1.

Theorem (B.–Gwynne 2020)

∀z ∈ C, conditional law of (η(X z,ε
mεt))t≥0 given (h, η)) converges in

probability to rescaled law of γ-LBM from z associated with h.

(Prokhorov topology induced by local uniform metric on curves
[0,∞)→ C.) In fact, convergence is uniform over z in any
compact subset of C.
Also true for Tutte embedding in the disc case.



Rough sketch of argument

1. Previous work

By work of Gwynne–Miller–Sheffield (2018), Tutte embedding ψ
converges to LQG:

sup
x∈VGε

|ψ(x)− η(x)| → 0

in probability.
Furthermore: up to parametrization, RW converges to BM.

So, “only” only need to deal with parametrisation.



2. Tightness

Let B = Bx (r) be a Euclidean ball, τ ε = exit time by RW of B.

Moments → Green function G ε: eg,

E(τ ε) =
∑
y∈B

G ε
B(x , y)

?� ε−1
∫

B
GB(x , y)µh(dy)?

Main issue: G ε(x , y) � G (x , y) (uniformly if possible).

Already know (bounded) discrete harmonic functions converge to
continuum harmonic functions.

GMS (2018) On-diagonal estimates: G (x , x) ≤ εo(1) uniformly
whp.



Energy estimates

Electrical network theory (Grigoryan’s lemma)
+ Harnack inequality: Gε(x , y) relates to Rεeff .

Hence find f ε minimising Dirichlet energy E(f ε, f ε) subj. to
boundary conditions.

Can use continuum guess to test!

Obtain G ε(x , y) � GB(x , y) for |y − x | ≥ εβ, for some small β.

Use naive diagonal bound in B(x , εβ) and a priori uniform
polynomial control for GMC.



3. Characterisation of LBM

Suppose ∀z we have a law Pz such that z 7→ Pz is continuous and:

I Pz is Markovian given h;

I Pz is a (random) time-change of BM from z ;

I P leaves the Liouville measure µ = µh associated to h
invariant.

Theorem (B.–Gwynne 2020)

Then there is a (possibly random) constant c s.t. Pz = law of
(X z

ct , t ≥ 0), where X z is LBM associated with h, starting from z.



Key idea: Revuz measure.

Definition (Positive Continuous Additive Functional (PCAF))

Let A = (At(ω); t ≥ 0) be a functional on path space. A is a
PCAF for the Markov process X if

I A is increasing in t

I At = As +At−s ◦ θs for every s, t.

In words A increases in a way that depends only on the future of
the trajectory.

Ex: F (t) =
∫ t
0 eγh(Bs)ds the Liouville clock (given h) is a PCAF

for B.



Revuz measure of a PCAF

Definition

A measure µ is a Revuz measure for X is µ(A) = 0 whenever X
does not hit A a.s.

Theorem (Revuz; Fukushima)

For each PCAF of a Hunt process there exists a unique Revuz
measure µ such that for all test functions f , g:∫
C
Ez

[∫ t

0
g(Bs)dAs

]
f (z)dz =

∫ t

0

[x
f (z)ps(z ,w)µ(dw)g(w)dz

]
ds.

Moreover µ determines A uniquely.

In words, dAt = “µ(Bt)dt” (in an integrated sense)



Here:

Let F be the time-change of Z ∼ Pz so that Bt = ZF (t).

Lemma

F is a PCAF for B.

Let µ = its Revuz measure. It suffices to show µ = Liouville µh !

One can check µ is necessarily invariant, but so is µh (assumption).

Z is strongly Feller so invariant measure is unique up to constants!


