Power Weakly Mixing Transformations

March 26, 2012

Abstract

It follows from Furstenberg’s proof of the multiple recurrence theorem that a weakly mixing, invertible, probability preserving transformation \(T : (X, P) \to (X, P) \) satisfies that for every finite sequence \(n_1, \ldots, n_k \in \mathbb{Z} \setminus \{0\} \),

\[T^{n_1} \times T^{n_2} \times \cdots \times T^{n_k} \]

is an ergodic measure preserving transformation of \(X^k \). A transformation satisfying the latter property is called “power weakly mixing”. We will survey some history around this property in the non probability preserving case and show constructions of a power weakly mixing, infinite measure preserving markovian \(\mathbb{R} \)-flows and a power weakly mixing non singular Bernoulli shift without an invariant \(P \)-equivalent \(\sigma \)-finite measure.