### Random Walks on Circle Packings



### Matan Seidel Joint work with Ori Gurel-Gurevich

Tel-Aviv Horowitz Seminar, 23/03/20

Matan Seidel

Random Walks on Circle Packings

11/12/19

< ∃⇒

# **Circle Packings**

Is there a canonical way of drawing a planar graph?

#### Definition

A **circle packing (CP)** is a collection of circles in the plane with disjoint interiors.

#### Definition

Given a circle packing, its **tangency graph** is the graph obtained by using the circles as vertices and connecting tangent circles by an edge.



### Circle Packing: An Example



#### Note

A circle packing induces a drawing of its tangency graph in straight lines by mapping the vertices to the centers of their correspding circles.

Matan Seidel

Random Walks on Circle Packings

11/12/19

# The Circle Packing Theorem (CPT)

#### Theorem (Koebe-Andreev-Thurston, 1936)

- (Existence) Every finite planar graph is the tangency graph of a circle packing.
- (Uniqueness) If the graph is a triangulation (outer face included) then the circle packing representing it is unique up to Möbius transformations and reflections.

### Corollary (Fáry-Wagner Theorem, 1936)

Every finite planar graph can be drawn in the plane in straight lines.

# Some History: Riemann Mapping Approximation

### Theorem (Rodin-Sullivan 87', conjectured by Thurston 85')

Let  $\Omega$  be a bounded simply-connected domain. Then circle packings can be used to approximate a Riemann map from  $\Omega$  to the unit disk.



(image from Stephenson's book "Introduction to Circle Packing")

Random Walks on Circle Packings

11/12/19

イロト イヨト イヨト -

### Some History: Riemann Mapping Approximation

Ring Lemma (Rodin-Sullivan 87')

For each  $d \in \mathbb{N}$ , there exists r = r(d) > 0 such that if a unit circle is surrounded by d circles forming a cycle externally tangent to it then their radii are larger than r.



# Infinite Graphs can also be circle packed!

All graphs in this talk are assumed to be:

- connected.
- locally finite.
- Infinite triangulations are assumed to have no outer face.

#### Question

Given an infinite planar triangulation, can it be circle packed? If so, is the circle packing unique?

#### Claim

Every infinite planar triangulation can be circle packed.

### Sketch of Proof

Take a sequence of finite subgraphs exhausting the graph and circle pack them using the CPT. Then use a compactness argument.

### Uniqueness?





<ロト <回ト < 回ト < 回ト -

(image from Asaf Nachmias' Saint-Flour lecture notes)

# The He-Schramm Theorem: Some Definitions

#### Definition

For a circle-packed infinite triangulation (CPIT), define its carrier  $\Omega \subseteq \mathbb{R}^2$  to be the union of its induced drawing's (triangular) faces.

#### Definition

A graph is called **1-ended** if the deletion of any finite set of vertices leaves the graph with exactly one infinite component.

#### Examples

- $\mathbb{Z}^2$  (the square lattice) is 1-ended.
- $\mathbb{Z}$  is not 1-ended.

# The He-Schramm Theorem

### Theorem (He-Schramm, 95')

Let G be a **1-ended** infinite triangulation. Then exactly one of the two following holds:

- **(**) *G* can be circle-packed with  $\mathbb{R}^2$  as carrier.
- **②** G can be circle-packed with the open unit disk  $\mathbb{D}$  as carrier.

Furthermore, if G has **bounded degrees** then

- iff G is recurrent.
- **2** iff G is transient.





# The He-Schramm Theorem

Matan Seidel

Random Walks on Circle Packings

≣ ∽ 11/12/19

ヘロト 人間ト 人団ト 人団ト

### Removing the 1-Ended Assumption

Without 1-endedness of the graph, the resulting carrier might have holes.

#### Definition

A domain  $\Omega \subseteq \mathbb{R}^2$  is called **parabolic** if for every  $x \in \Omega$  and an open  $U \subseteq \Omega$ , Brownian motion started at x and killed upon hitting  $\partial \Omega$  hits U with probability 1. Otherwise, it is called **hyperbolic**.



### Theorem (Gurel-Gurevich, Nachmias, Souto 2017')

Let G be a (planar) infinite triangulation with bounded degrees, then: G is recurrent  $\iff$  some CP of G has parabolic carrier  $\iff$  any CP of G has parabolic carrier.

11/12/19

## Parabolicity <-> Recurrence

#### Equivalent Condition for Parabolicity

A domain  $\Omega \subseteq \mathbb{R}^2$  is parabolic iff for every  $K \subseteq \Omega$  compact and  $\varepsilon > 0$ there exists a Lipschitz function  $0 \le \phi \le 1$  compactly supported in  $\Omega$  with  $\phi \mid_K \equiv 1$  such that  $\iint_{\Omega} \|\nabla \phi\|^2 dA < \varepsilon$ .

#### Equivalent Condition for Recurrence

Let G = (V, E) be a graph and fix some  $\rho \in V$ . Then G is recurrent iff for every  $\varepsilon > 0$  there exists a finitely supported function  $f : V \to \mathbb{R}$  with  $f(\rho) = 1$  and  $\sum_{uv \in E} (f(v) - f(u))^2 < \varepsilon$ .



### The Bounded Degree Assumption

Without bounded degrees, the He-Schramm theorem might fail: The circles added to the hexagonal lattice create a rightward drift and thus transience. However, the carrier remains the entire plane (i.e. parabolic).



(image from Asaf Nachmias' Saint-Flour lecture notes)

### The Bounded Degree Assumption

Without bounded degrees, the He-Schramm theorem might fail: The circles added to the hexagonal lattice create a rightward drift and thus transience. However, the carrier remains the entire plane (i.e. parabolic).



(image from Asaf Nachmias' Saint-Flour lecture notes)

Random Walks on Circle Packings

# Weighted Random Walk

### Idea: Use weighted random walk

- Random walker chooses an edge with prob. proportional to its weight.
- Edge weights introduced by Duffin (1968) and Dubejko (1995).

#### Properties of the Weighted Random Walk

- The sequence of centers visited by the random walker is a martingale! (Dubejko, 1995).
- Weights bounded from above by a (universal) constant.
- Under bounded degree assumptions, weights also bounded from below by a constant.

### Theorem (Gurel-Gurevich, S. 2019)

The weighted random walk on a CPIT with parabolic carrier is recurrent.

# The Weights: Definition

A circle-packed triangulation induces a circle packing of the dual graph by considering the incircles of the triangular faces.

### Definition

The **weight** of an edge  $e \in E$  is the length ratio  $\frac{|e^{\dagger}|}{|e|}$ .

### Theorem (Dubejko, 95')

The sequence of centers of circles traversed in the weighted random walk is a martingale.



The Weights: Proof of Martingale Property

#### Proof

To show:  $\sum_{i=1}^{n} c_{vu_i} \overrightarrow{e_i} = 0$ . Indeed, Let *R* be a 90° rotation, then:

$$R\left(\sum_{i=1}^{n} c_{vu_i} \overrightarrow{e_i}\right) = \sum_{i=1}^{n} \frac{\left|\overrightarrow{f_i}\right|}{\left|\overrightarrow{e_i}\right|} R\left(\overrightarrow{e_i}\right) = \sum_{i=1}^{n} \overrightarrow{f_i} = 0.$$



# Special case of converse: bounded carrier

### Proposition

The weighted random walk  $(X_n)_{n \in \mathbb{N}}$  on a circle-packed infinite triangulation with a bounded carrier is transient.

### Proof

Fix two vertices  $\rho, \rho' \in V$ .  $(X_n)_{n \in \mathbb{N}}$  is a bounded martingale, so  $X_n \xrightarrow{a.s} X$  for some RV X.

Suppose recurrence, then:

- a.s. we have  $X_n = \rho$  infinitely often  $=> X \stackrel{a.s}{=} \rho$ .
- **2** a.s. we have  $X_n = \rho'$  infinitely often  $=> X \stackrel{a.s}{=} \rho'$ .

in contradiction.



# Sketch of the Proof

### Theorem (Gurel-Gurevich, S. 2019)

The weighted random walk on a circle-packed infinite triangulation  $\{C_v\}_{v \in V}$  with parabolic carrier  $\Omega$  is recurrent.

#### Sketch of Proof

**Goal**: find  $f : V \to \mathbb{R}$  finitely supported,  $f(\rho) = 1$  with small energy  $\varepsilon(f) = \sum_{xy \in E} c_{xy} (f(y) - f(x))^2$ .

Take  $f = \phi \mid_V$  for  $\phi : \Omega \rightarrow [0, 1]$  of parabolicity:

• 
$$\phi \mid_{\mathcal{K}} \equiv 1 \Longrightarrow f(\rho) = 1$$

- $\phi$  comp. supp. => f finitely supported.
- $\iint_{\Omega} \|\nabla \phi\|^2 \, dA$  is small.



# Sketch of the Proof

### How to bound the discrete sum?

- Discrete sum  $\leq$  some 2D integral on polygons.
  - (fund. theorem, averaging, Cauchy-Schwarz, euclidean geometry)
- For good-angled polygons: bound with continuous Dirichlet energy
   (Harmonic analysis)
- So For bad-angled polygons: "fix" graph to bound in another way.
  - (Martingales, Markov chains, Coupling, Electric networks)



Random Walks on Circle Packings

# Two Transforms on a Markov Chain

#### Definition

A **network** is a pair (V, c), where  $c : V \times V \rightarrow [0, \infty)$  are weights such that:

- (Symmetric)  $c_{x,y} = c_{y,x}$  for all  $x, y \in V$
- (Normalizable)  $\pi(x) := \sum_{y \in V} c_{x,y} < \infty$  for all  $x \in V$
- (Connected) The graph obtained by connecting x, y by an edge iff c<sub>x,y</sub> > 0 is connected.

### Definition

A Markov chain on state space V is said to be **represented by** the network (V, c) if its transition matrix P satisfies:  $P_{x,y} = \frac{c_{x,y}}{\pi(x)}$ .

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

# Two Transforms on a Markov Chain

### Definition

- Let  $(X_n)_{n \in \mathbb{N}}$  be a Markov chain on state space V:
  - Let  $W \subsetneq V$  finite, set  $V' := V \setminus W$ . The **chain censored to** V' is the process obtained by deleting appearances of W from  $(X_1, X_2, ...)$ .
  - **②** The **repetition-deleted chain** is the process obtained by deleting adjacent appearances of the same state from  $(X_1, X_2, ...)$ .



# Two Transforms on a Markov Chain

### Proposition

Let (V, c) be a network and let  $(X_n)$  be a MC represented by (V, c). Then:

- For  $W = \{w\}$  and  $V' := V \setminus W$ , the chain censored to V' is represented by (V', c') where:  $c'_{x,y} = c_{x,y} + \frac{c_{x,w}c_{w,y}}{\pi(w) c_{w,w}}$ .
- **②** The repetition-deleted chain is represented by (V, c') where:



# Coupling Lemma

#### Lemma

Let  $\{C_v\}_{v \in V}$  be a CPIT and let  $C_x$ ,  $C_y$ ,  $C_z$  be mutually tangent such that  $W := V \cap int(conv(\{x, y, z\}))$  is finite. Let  $(X_n)_{n \in \mathbb{N}}$  be a weighted random walk on  $\{C_v\}_{v \in V}$ . Then the chain obtained by censoring  $(X_n)$  to  $V' := V \setminus W$  and then deleting repetitions is represented by the weights of  $\{C_v\}_{v \in V'}$ .



### Why is the lemma useful?

### Idea: Insert circles to "push" bad polygons

- Circle insertion gives control over the bad edges' weights.
- insert until all bad edges' weights are summable (with small sum).
- Use bound  $c_{x,y} \left(f\left(y\right) f\left(x\right)\right)^2 \leq c_{x,y}$ .
- Lemma => original network recurrent iff new network recurrent (same eff. resistance to inf).



| Notation                  |                                    |         |
|---------------------------|------------------------------------|---------|
| Chain                     | What is it?                        | Weights |
| $(X_n)$                   | weighted RW on $\{C_v\}_{v\in V}$  | с       |
| ( <i>Y</i> <sub>n</sub> ) | censored & rep-deleted $(X_n)$     | с′      |
| $(Z_n)$                   | weighted RW on $\{C_v\}_{v\in V'}$ | с″      |

Proof

To show: c' = c''.

Note: for all  $uv \notin \{xy, xz, yz\}$ we have:  $c'_{uv} = c_{uv} = c''_{uv}$ .

・ 何 ト ・ ヨ ト ・ ヨ ト ・

#### Proof

Set  $Z_0 \equiv x$ . Since  $(Z_n)$  is a martingale:  $0 = \mathbb{E} \left[ Z_1 - Z_0 \right] = \sum_{i=1}^n \frac{c_{x,u_i}''}{\pi''(x)} \left( u_i - x \right) + \frac{c_{x,y}''}{\pi''(x)} \left( y - x \right) + \frac{c_{x,z}''}{\pi''(x)} \left( z - x \right)$ 

So we get:

$$\sum_{i=1}^{n} c_{x,u_i} \left( u_i - x \right) + c_{x,y}'' \left( y - x \right) + c_{x,z}'' \left( z - x \right) = 0.$$



Proof

Set  $X_0 \equiv x$  and set stopping time  $\tau = \inf \{t > 0 \mid X_t \notin W \cup \{x\}\}$ . Since  $(X_n)$  is a martingale:  $0 = \mathbb{E} [X_\tau - X_0] = \mathbb{E} [Y_1 - Y_0] =$  $\sum_{i=1}^n \frac{c'_{x,u_i}}{\pi'(x)} (u_i - x) + \frac{c'_{x,y}}{\pi'(x)} (y - x) + \frac{c'_{x,z}}{\pi'(x)} (z - x).$ 

So we get:  

$$\sum_{i=1}^{n} c_{x,u_i} (u_i - x) + c'_{x,y} (y - x) + c'_{x,z} (z - x) = 0.$$



### Proof

Substracting the two equations gives:

$$(c'_{x,y}-c''_{x,y})(y-x)+(c'_{x,z}-c''_{x,z})(z-x)=0.$$

y - x and z - x are edges of a triangle => linearly independent!

Thus:  $c'_{x,y} - c''_{x,y} = c'_{x,z} - c''_{x,z} = 0.$ 



イロト イヨト イヨト



# Thanks!

Random Walks on Circle Packings

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶