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Dense disk-packing in a popular culture



Dense disk-packing on unit lattices: (a) triangular, (b) square



Dense disk-packing on triangular lattice

Inscribed/inclined triangular/hexagonal arrangement

depending on the value of D .
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Dense disk-packing on square lattice

D = 2

Lattice and non-lattice: all have the same particle

density 1/4.



Dense disk-packing on square lattice

First surprises: the disks do not want to touch each

other (at least, partially). And they do not want to

form squares (for D2 ≥ 20).

D = 5,
√
32



The object of investigation: the hard-core model

The hard-core model was introduced in late 1940s and

early 1950s in theoretical chemistry, for a gas where

the particles

- have non-negligible diameters,

- cannot overlap.

The impact of the model spread out to many areas:

theoretical and mathematical physics, dynamical systems,

computer science, network theory, social sciences, etc.
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The hard-core model

The model is about probability measures on the set of

admissible configurations.

- The key parameters characterizing the model: the

underlying set W, the hard-core diameter D > 0 and

the fugacity u.

(a)

Let W ⊂ Rd be a countable set. We say that a configuration
φ ∈ {0, 1}W is D-admissible if ρ(x , y) ≥ D ∀ pairs of ‘occupied’
points x , y ∈W with φ(x) = φ(y) = 1. The set of D-admissible
configurations is denoted by A = A(W,D). The notion of a
D-admissible configuration can be given ∀ finite set V ⊂ Rd .
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Concatenated configurations, W: a triangular lattice

D = 5



Concatenated configurations, W: a triangular lattice



Concatenated configurations, W: a triangular lattice



The hard-core model

(b)

Let V ⊂W be a finite set, and φ ∈ A be a D-admissible
configuration. We say that a finite configuration ψV ∈ {0, 1}V is
compatible with φ if the concatenated configuration
ψV ∨ (φ �W\V ) ∈ A.
Given u > 0, consider a probability measure µV |W( · ‖φ) on {0, 1}V
given by

µV |W(ψV ‖φ) =


u](ψ

V )

Z (V |W;φ)
, if ψV and φ are compatible,

0, otherwise.

(i) ](ψV ) is the number of occupied sites in ψV ,

(ii) Z (V |W;φ) =
∑

ψV∈{0,1}V
u](ψ

V )1
(
ψV compatible with φ

)
the partition function in V with the boundary condition φ.



The hard-core model

(c)

A probability measure µ on {0, 1}W is called a D-hard-core
Gibbs/DLR-measure on {0, 1}W if ∀ finite V ⊂W and a function
f : φ ∈ {0, 1}W 7→ f (φ) ∈ C depending only on the restriction φ �V ,
the integral µ(f ) =

∫
{0,1}W f (φ)dµ(φ) has the form

µ(f ) =

∫
{0,1}W

∫
{0,1}V

f (ψV ∨ φ �W\V )dµV |W(ψV ‖φ)dµ(φ).

It means that under µ, the probability of a configuration in a finite
subset V ⊂W conditional on a configuration φ �W\V coincides with
µV |W(ψV ‖φ), for µ-a.a. φ.



Hard-core Gibbs measures: uniqueness vs non-uniqueness

One of the main questions: verify, for given W, D and

u, whether there is a unique hard-core Gibbs measure

or many.

In the latter case it would be interesting to describe

extreme Gibbs measures since every Gibbs measure is a

mixture of these.
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We focus upon W = A2,Z2,H2 .

� The exclusion diameter D is measured in the Euclidean

metric ρ.
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What we know:

For W = Zd , with nearest-neighbor repulsion D =
√
2:

- Suhov (1967): d = 2, Dobrushin (1968): d ≥ 2. Existence

of multiple hard-core measures for sufficiently

large u.

- Peled & Samotij (2014): non-uniqueness for

u & Cd−1/3(log d)2 .

...

- Sinclair, et al. (2016); Blanca, et al. (2016): for d = 2,
2.538 < ucr < 5.3506.

For W = A2:

- Heilmann & Praestgaard (1973): non-uniqueness for

large u, for a large collection of values of D .

- Baxter (1980): The critical value for D =
√
3 is

ucr =
1
2(11 + 5

√
5).
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W = A2,Z2,H2

I’ll address the question about the number of extreme hard-core
Gibbs/DLR measures on A2, Z2 and H2 in a large fugacity regime
(u >> ucr ∨ 1) for any D .

� We consider attainable values of the hard-core

diameter D .

• Z2: Gaussian integers; Fermat

decomposition: D2 = a2 + b2 where a, b ∈ Z+ .

• A2,H2: Eisenstein integers; Löschian

numbers: D2 = a2 + b2 + ab where a, b ∈ Z+ .

� As was said, we are interested in the extreme
Gibbs/DLR measures µ which cannot be written as a

non-trivial convex linear combination αµ1 + (1− α)µ2 of

Gibbs measures µ1 and µ2 .
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numbers: D2 = a2 + b2 + ab where a, b ∈ Z+ .

� As was said, we are interested in the extreme
Gibbs/DLR measures µ which cannot be written as a

non-trivial convex linear combination αµ1 + (1− α)µ2 of

Gibbs measures µ1 and µ2 .



W = A2,Z2,H2

I’ll address the question about the number of extreme hard-core
Gibbs/DLR measures on A2, Z2 and H2 in a large fugacity regime
(u >> ucr ∨ 1) for any D .

� We consider attainable values of the hard-core

diameter D .

• Z2: Gaussian integers; Fermat

decomposition: D2 = a2 + b2 where a, b ∈ Z+ .

• A2,H2: Eisenstein integers; Löschian
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Pirogov, Sinai, Zahradnik

Pirogov-Sinai theory:

periodic extreme Gibbs measures are generated by dominant
periodic ground states, with the help of a Peierls bound and
polymer expansion.

(I) A finite set of periodic ground states: admissible

configurations ϕ ∈ A with certain

properties.

(II) A Peierls bound: a bound for the probability

for a deviation from the periodic ground

states in a Gibbs measure.

Dobrushin-Shlosman: in 2D, non-periodic ground states

do not generate extreme Gibbs measures.
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(Periodic) Ground States

A ground state: a D-admissible configuration ϕ on the

lattice which cannot be improved locally: for any

D-admissible configuration ψ that differs from ϕ on a

finite set of lattice sites V

]V(ϕ) > ]V(ψ).

A ground state ϕ is called periodic if there exist linearly

independent vectors e1, e2 such that ϕ is invariant

under lattice shifts Sei :

Seiϕ = ϕ, i = 1, 2.
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W = A2 : Periodic ground states = D-sublattices

Any ordered pair of integers (a, b) solving the equation
D2 = a2 + b2 + ab defines a D-sublattice in A2 containing the
origin and the following 6 sites:
(a, b); (−b, a+ b); (−a− b, a); (−a,−b); (b,−a− b); (a+ b,−a)

The periodic ground states are obtained from the

sublattices by shifts along the fundamental parallelograms
and rotations.

Each periodic ground state

is completely determined by

just two occupied sites x , y
with ρ(x , y) = D .

This is a ‘rigidity’ property

of A2; it simplifies the anal-

ysis on A2 comparing to Z2 .
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Eisenstein integer ring

Eisenstein integers:

z = a+ bω ∈ C, where ω = −1

2
+ i

√
3

2
, a, b ∈ Z.

Eisenstein primes:

- 1− ω
- integer primes of the form 3k − 1

- (a+ bω) such that a2 − ab + b2 is prime in Z

D2 = c2 + d2 + cd = ε(1 − ω)α
∏

i≥0 pi
βi

∏
j≥0(aj − bjω)

γj
∏

k≥0(ak − bkω
2)δk
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A2 : Extreme Gibbs measures

Theorem 1
There are m · D2 periodic ground states, where m = 1 or 2 depending
on the Eisenstein prime decomposition of D2. There exists
u0 ∈ (1,∞) such that for all u ≥ u0 the following properties hold.

- (a) Each of m ·D2 periodic ground states ϕ generates an extreme
Gibbs/DLR measure µϕ. The measures µϕ are pair-wise disjoint.

- (b) Any Gibbs/DLR measure µ is a convex linear combination of
measures µϕ.

We say that an extreme Gibbs/DLR measure µ is

generated by a periodic ground state ϕ if

µ = w − lim
V↗A2

µV |A2
( · ||ϕ).

Physically, it means that µϕ is supported on

configurations that percolate to infinity along ϕ but

NOT along any other periodic ground state.
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A2 : Extreme Gibbs measures

For a general D , not all periodic ground states

generate extreme Gibbs measures only the dominant
ones.

Theorem 2.
If there exist M ≥ 1 dominant types of periodic ground states then,
for a large u, the number of extreme Gibbs/DLR measures is

D2
M∑
j=1

mj ,

where mj ∈ {1, 2} is determined by the Eisenstein prime
decomposition of D2.
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Z2 : a misleading picture



Periodic vs. non-periodic, lattice vs. non-lattice ground

states



Z2 : sliding

On Z2 for some values of D there is a phenomenon of

sliding, with countably many periodic ground states.

Sliding occurs when we can shift a 1D array of occupied

sites without violating the non-overlapping condition.

This generates a characteristic pattern of ’competing’

fundamental triangles.
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Z2 : sliding vs. non-sliding, D2 = 4, 5



Z2 : sliding for D2 = 8, 9



Values of D with sliding

For the values of D with sliding the Pirogov-Sinai

theory is not applicable, and we will simply disregard such

Ds in what follows.

Theorem S.
There are 39 sliding values and they are listed below.

D2 = 4, 8, 9, 18, 20, 29, 45, 72, 80, 106, 121, 157, 160, 218, 281, 392,
521, 698, 821, 1042, 1325, 1348, 1517, 1565, 2005, 2792, 3034, 3709,
4453, 4756, 6865, 11449, 12740, 13225, 15488, 22784, 29890, 37970.

Krachun (2019): proved that the number of sliding

instances is finite.

¿ We expect that sliding leads to uniqueness of a Gibbs/DLR measure
for large enough u. ?
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Z2 : Optimization problem for fundamental triangles

The key part of our approach is the following

optimization problem:

miminize the area of a Z2-lattice triangle with angles
α1 ≥ α2 ≥ α3 and side-lengths `0 ≥ `1 ≥ `2, subject

to the restrictions that α1 ≤ π/2 and `2 ≥ D .
(∗)

Here a solution always exists but can be non-unique.

Each solution can serve as a fundamental triangle of a

sublattice in Z2 which we call a D-min-area sublattice.

For D ≥
√
20, it is a D-min-area sublattice, not a square arrangement,

which determines a periodic ground state for a given D on Z2.
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Values D with uniqueness

X The D-min-area sub-lattices are obtained from each

other via rotations by ±π/2 and reflections about the

axes.

X This defines an equivalence class of sub-lattices with

a given triple (`0, `1, `2). We say we have uniqueness in

(∗) if the equivalence class is unique. It may contain a

single sublattice (m = 1) or two sublattices (m = 2) or

four (m = 4).



Values D with non-uniqueness

The non-uniqueness in (∗) has a two-fold character:

(i) There may be more than one triple (`0, `1, `2)
solving (∗). We found one attainable D
with 5 different triples.

(ii) For a given triple (`0, `1, `2) there may be

several ways to inscribe the triangle into

Z2, which generates several equivalence

classes. So far, the maximal number of

equivalence classes observed is 4.

Uniqueness and both non-uniqueness forms have

infinite occurrences of D .
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- Frame (A): D2 = 425, (S = 375). The optimal squared

side lengths are 425, 425, 450, with two

non-equivalent Z2 implementations.

- Frame (B): D2 = 65, (S = 60). The optimal squared

side-lengths are 65, 65, 80 (blue) and 68, 68, 72 (black);

both triangles admit a unique implementation up

to Z2-symmetries.



Z2 : Solutions to the optimization problem

X If S/2 is the minimal area in (∗) then S gives

the number of the lattice points in a

fundamental parallelogram of a sub-lattice.

X It is clear that S ≤ D2 but in fact for all D
with 20 < D2 ≤ 9990017 we have S < D2; as

our computations show, the difference

D2 − S grows monotonically with D .

X Another feature is that side-length l3 is

often > D : we call the value of D with this

property non-tessellating.
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Z2 : A count of periodic ground states.

For D2 = 25: l21 = 29, l22 = 26, l23 = 25. For D2 = 32: l21 = 36, l22 = l23 = 34.



Z2 : Extreme Gibbs measures: uniqueness in (∗)

Theorem 3.
Suppose that for a given D , the optimization problem (∗) produces a
unique triple (`0, `1, `2), unique equivalence class (hence no
sliding). Then the number of extreme Gibbs measures for u large
enough matches the number of the periodic ground states: it equals

mS

where

- (a) m = 1 if D = 1,
√
2 (here the fundamental parallelogram is a

square),

- (b) m = 2 if the fundamental triangle is isosceles,

- (c) m = 4 if the fundamental triangle is non-isosceles.

The extreme Gibbs measures are generated by periodic ground states.



Z2 : Extreme Gibbs measures: non-uniqueness in (∗)

In general, not all periodic ground states generate

extreme Gibbs measures only the dominant ones.

Theorem 4.
Suppose that D is non-sliding and generates non-uniqueness in (∗). If
there exist M ≥ 1 dominant types of periodic ground states then, for a
large u, the number of extreme Gibbs/DLR measures is

S
M∑
j=1

mj ,

where mj ∈ {2, 4} is determined by the shape of the dominant
fundamental triangle (isosceles or not).
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The queen of math, again

We can prove that the classes of D2 which are

referred to in Theorems 3 and 4 are both infinite.

The idea is to approximate an equilateral triangle by

Z2-triangles. It leads to norm equations in the cyclotomic

integer ring Z[ζ], where ζ is a primitive 12th root of

unity.

t2 = 3s2 + r , s, t ∈ Z.

Here r is given positive integer. A famous example is

the Pell equation, with r = 1.

The solutions to the norm equation have to be

analyzed both geometrically and algebraically. This leads

to infinite sequences of values of D of both types.
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Z2 : Extreme Gibbs measures: non-uniqueness in (∗)

The smallest values of D2 from Theorem 4 are

D2 = 65, 130, 324. The analysis of dominance can be done

on a case-by-case basis, by counting local excitations
where we vacate some occupied sites in a periodic

ground state and attempt to insert ’new particles’

while maintaining admissibility.



Z2, D2 = 130 = 112 + 32 = 92 + 72 : local excitations



W = H2



W = H2, Class I

First we divide the attainable values D2 = a2 + b2 + ab in

to two classes:

I. 3 |D2,

II. 3 - D2 .

In Class I the problem reduces to the case of the

triangular lattice A2 . It leads to a further division into

3 subclasses based on the same Eisenstein prime

decomposition of D . It yields the respective formulas

for the number of extreme Gibbs measures

2

3
D2,

4

3
D2,

2

3
D2

M∑
j=1

mj , with mj ∈ {1, 2}.



W = H2, Class I

D2 = 48 left frame, D2 = 39 right frame.



W = H2, Class II

Class II admits a further partition.

– There are 13 exceptional values forming a finite

subclass:

D2 = 1, 4, 7, 13, 16, 28, 49, 64, 67, 97, 133, 157, 256.

– And there is an infinite subclass containing all

remaining Löschian numbers not divisible by 3.

For non-exceptional values D , minimal-area triangles

can be found via a discrete optimization problem.

However, they do not generate a tiling of H2 . Hence,

one needs to consider sub-optimal triangles which

tessellate H2 . The first among them is an equilateral

D∗-triangle, where D∗ > D is the closest value with

3 |D∗ . Then the formulas for Class I apply with D∗

replacing D .



W = H2, Exceptional non-sliding values

Exceptional non-sliding values of D

D2 = 1, 13, 28, 49, 64, 97, 157, 16, 256, 67.

Ground states: involve non-equilateral and equilateral triangles in
specific combinations/arrangements.

These values of D require a case-by-case analysis, with

the help of a computer. (Informally we call them a Zoo.)

Each ground state generates an extreme Gibbs

measure for u large enough. Except for D2 = 67: here

again we have an issue of dominance, and some

periodic ground states are suppressed.



W = H2, Exceptional non-sliding examples

D2 = 13

D2 = 67



W = H2, Exceptional values: sliding

Sliding

D2 = 4, 7, 133.

D2 = 4 left frame D2 = 7 right frame


