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Dense disk-packing in a popular culture



Dense disk-packina on unit lattices: (a) trianaular, (&) square
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Fragments of the dense-packed configurations for D = /3, D =2 and D = \/7; the
latter case is represented by two configurations obtained from each other by a reflection
(about any of the 3 directions constituting L).

Inserired/inclined trianaular/hexagonal arranaement
depending on the value of D.




Dense disk-packina on s@uare lattice

Lattice and non-lattice: all have the same particle
density I/+.



Dense disk-packina on square lattice

First surprises: the disks do not want to touch each
other (at least, partially). And they do not want to
form s@uares (for D2 > 20).
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The oBject of investigation: the hard-core model

The hard-core model was introduced in late 194Os and
early I950s in theoretical chemistry, for a @as where
the particles

- have non-negliairle diameters,

- cannoOt overlap.

The impact of the model spread out tO many areas:
theoretical and mathematical physics, dynamical systems,
computer science, network theory, social sciences, ete
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The hard-core model

The model is arout probability measures on the set of
admissirle configurations.

- The key parameters characterizing the model: the
underlying set W, the hard-core diameter D > 0 and
the fugacity u.

(a)

Let W C R be a countable set. We say that a configuration
¢ € {0,1}W is D-admissible if p(x,y) > D V pairs of ‘occupied’

points x, y € W with ¢(x) = ¢(y) = 1. The set of D-admissible
configurations is denoted by A = A(W, D). The notion of a
D-admissible configuration can be given V finite set V' C RY.




Concatenated contigurations, W: a triangular lattice
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Concatenated contigurations, W: a trianaular lattice
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The hard-core model

(b)

Let V C W be a finite set, and ¢ € A be a D-admissible
configuration. We say that a finite configuration v»" € {0,1}" is
compatible with ¢ if the concatenated configuration

WYV (¢ lwv) € A

Given u > 0, consider a probability measure 1y w( - [|¢) on {0, 1}V

given by

“‘ if 1V and ¢ are compatible,

HV|W(‘¢’V||¢) = ‘ b
otherwise.

(D (1Y) is the numrer of occupied sites in 3",

iy Z(V[Wig)= 3 uf1(yY compatisle with ¢)
¥V e{0,1}V
the partition function in V with the Boundary condition ¢.



The hard-core model

(©)

A probability measure . on {0,1}" is called a D-hard-core
Gibbs/DLR-measure on {0,1}"V if V finite V C W and a function
f:¢€{0,1}W s f(¢) € C depending only on the restriction ¢ [y,
the integral pu(f) = f{o‘l}W f(¢)du(e) has the form

_ v v
w0 = [ VS T 0)dn)

It means that under p, the probability of a configuration in a finite
subset V' C W conditional on a configuration ¢ [y coincides with

pviw (Y [|9), for p-a.a. ¢.
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Or many.



Hard-core Girrs measures: uniQUENess Vs NON-UNiQUENessS

One of the main Questions: veridy, for aiven W, D and
u, whether there is a unique hard-core Girrs measure
Or many.

In the latter case it would Be interesting to descrire
extreme GiBRs measures since every Giegks measure is a
Mmixture of these.



Ay, 72, Hp.

We focus upon W




We focus upon W = A,, Z2, Hp.

o The exclusion diameter D is measured in the Euclidean
metric p.
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- Suhov (I96MN): d = 2, Dobrushin (I968): d > 2. Existence
Of multiple hard-core measures £or subficiently
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What we know:

For W = Z9, with nearest-neichBor repulsion D = /2:

- Suhov (I961): d = 2, Dobrushin (I968): d > 2. Existence
Of multiple hard-core measures £or sufficiently
larae wu.

- Peled & Samotij (20I4): non-uniQueness £for
u > Cd=1P{logidig

- Sinclair, et al. (20I6); Blanca, et al. (20I): for d = 2,
2.538 < ur < 5.3506.

For W= As:
- Heilmann & Praestgaard (I973): non-uniQueness for
larae u, for a larae collection of values of D.

- Baxter (1980): The critical value £or D =+/3 is
Uer = (114 5V/5).
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W= A27227}:H12

I’ll address the question about the number of extreme hard-core

Gibbs/DLR measures on A, Z? and Hj in a large fugacity regime
(u>> ue V1) forany D.

We consider attainable values of the hard-core
diameter D.
e 7?: Gaussian intecers; Fermat
decomposition: D? = a° 4 b?> where a,b € Z,.
o Ay, Hy: Eisenstein intecers; Loschian
NUMBers: where a,beZ,.

As was said, we are interested in the extreme
Girrs/DLR. measures p which cannot Be written as a
non—trivial convex linear comeination au; + (1 — a)u of
GirRs measures g and .
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Piroaov, Sinai, Zahradnik

Pirogov-Sinai theory:

periodic extreme Gibbs measures are generated by dominant

periodic ground states, with the help of a Peierls bound and
polymer expansion.

(D A finite set of periodic ground states: admissigle
configurations ¢ € A with certain
proper-ties.

(IN A Peierls bound: a Bound for the progarility
for a deviation from the periodic around
states in 8 Girks measure.

Dobrushin-Shlosman: in 2.D, non-periodic around states
do not generate extreme GiBRs measures.



(Periodic) Ground States

A ground state: 3 D-admissiele configuration ¢ on the
lattice which cannot Be improved ocally: fOr any
D-admissigle configuration ¢ that differs from ¢ on a
finite set of lattice sites V
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(Periodie) Ground States

A ground state: 8 D-admwissigle configuration ¢ on the
lattice which cannot Be improved ocally: fOr any
D-admissigle configuration ¢ that differs from ¢ on a
finite set of lattice sites V

iV(e) > §V(¥).

A around state ¢ is called periodic i$ there exist linearly
independent vectors e, e such that ¢ is invariant
under lattice shifts S

Sep=¢, =12



W = A,: Periodic around states = D-surlattices

Any ordered pair of integers (a, b) solving the equation
D? = a% + b? + ab defines a D-sublattice in A, containing the

origin and the following 6 sites:
(a, b); (—b,a+ b);(—a— b,a);(—a,—b); (b,—a— b);(a+ b,—a)
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W = A,: Periodic around states = D-suBlattices

Any ordered pair of integers (a, b) solving the equation
D? = a% + b? + ab defines a D-sublattice in A, containing the

origin and the following 6 sites:
(a,b); (—=b,a+ b);(—a— b,a);(—a, —b); (b,—a — b);(a+ b, —a)

The periodic around states are ogtained from the
suBlattices Ry shifts alona the fundamental parallelograms
and rotations.

Each periodic around state
Is completely determined Ry
just two occupried sites x,y
with p(x,y) = D.

This is 8 'riaidity property
VA /N/\ VAVAVAVAN of Ay it simplifies the anal-
Fundamental parallelogram for D =5 ysis on A, comparing to Z2
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Eisenstein intecer ring
Eisenstein integers:
z=a+bweC, wkere_w——;Jri\f, a,beZ.
Eisenstein primes:
-1—w
- intecer privies of the form 3k — 1
- (a+ bw) such that a® — ab+ b? is prime in Z

D?=c?+d®+cd=c(l—w)® [Ti>o pii [Tj>o0(a — bjw) " Tlksolak — byw?)%k
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Ay Extreme Girks measures

Theorem 1

There are m - D? periodic ground states, where m = 1 or 2 depending
on the Eisenstein prime decomposition of D?. There exists
u® € (1,00) such that for all u > 1 the following properties hold.

(a) Each of m - D? periodic ground states ( generates an extreme
Gibbs/DLR measure y,. The measures i, are pair-wise disjoint.

(b) Any Gibbs/DLR measure p is a convex linear combination of
measures fi,.

We say that an extreme Gires/DLR. measure pu is
aenerated By a periodic around state ¢ i£

—w— i le).
p=w V%2MV|A2( |l)
Physically, it means that 1, is supported on

configurations that percolate to infinity slong ¢ But
NOT alona any other periodic ground state.
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Ay Extreme Girks measures
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ones.



Ay Extreme Gieks measures

For a gaeneral D, not all periodic around states
Generate extreme Gigks measures only the dominant
ones.

Theorem 2.

If there exist M > 1 dominant types of periodic ground states then,
for a large u, the number of extreme Gibbs/DLR measures is

M
2 .
D g mj,
j=1

where m; € {1, 2} is determined by the Eisenstein prime
decomposition of D?.




72: a misleading picture




Periodic vs. non-periadic, lattice vs. non-lattice around
states
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On 72 $or some values of D there is a phenomenon of
sliding, with countarly many periodic around states.

Slhidinag occurs when we can shift a ID array of occupied
sites without violating the non-overlapping condition.
This cenerates a characteristic pattern of ‘competing’
fundamental trianales.



Z?: sliding vs. non-slidina, D? = 4,5




7Z?: slidina for D? =8,9
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Values of D with sliding

For the values of D with sliding the Pirogov-Sinai
theory is not applicarle, and we will simply disreaard such
Ds in what follows.

Theorem S.

There are 39 sliding values and they are listed below.

D? = 4,8,9,18,20,29, 45,72, 80,106, 121, 157, 160, 218, 281, 392,
521,698,821, 1042, 1325, 1348, 1517, 1565, 2005, 2792, 3034, 3709,
4453, 4756, 6865, 11449, 12740, 13225, 15488, 22784, 29890, 37970.

Krachun (2019): proved that the numrer of sliding
instances is finite.

({, We expect that sliding leads to uniqueness of a Gibbs/DLR measure

for large enough u. ?




Z?: Optimization proelem £or fundamental trisnales

The key part of our approach is the following
oprtimization proelem:



Z?: Optimization proelem £or fundamental trisnales

The key part of our approach is the following
optimization proglem:

miminize the area of a Z2-lattice triangle with angles

a1 > ao > az and side-lengths ¢ > ¢ > {5, subject
to the restrictions that 3 < w/2 and ¢, > D.




Z?: Optimization proelem for fundamental trisnales

The key part of our approach is the following
optimization proglem:

miminize the area of a Z2-lattice triangle with angles

a1 > ap > a3 and side-lengths £y > £1 > {5, subject (*)
to the restrictions that 3 < w/2 and ¢, > D.

Here a solution always exists But can Be NnoN-uNniQue.



Z?: Optimization proelem for fundamental trisnales

The key part of our approach is the following
oprtimization proglem:

miminize the area of a Z2-lattice triangle with angles

a1 > ap > a3 and side-lengths £y > £1 > {5, subject (*)
to the restrictions that 3 < w/2 and ¢, > D.

Here a solution always exists But can Be NoN-uniQue.

Each solution can serve as a fundamental triangle of a
suglattice in Z2 which we call 8 D-min-area sublattice.



Z?: Optimization proelem £or fundamental trisnales

The key part of our approach is the following
optimization proglem:

miminize the area of a Z2-lattice triangle with angles

a1 > ap > a3 and side-lengths £y > £1 > {5, subject (*)
to the restrictions that 3 < w/2 and ¢, > D.

Here a solution always exists But can Be NoN-uNniQue.

Each solution can serve as a fundamental triangle of a
suglattice in Z2 which we call 8 D-min-area sublattice.

For D > /20, it is a D-min-area sublattice, not a square arrangement,

which determines a periodic ground state for a given D on Z?2.



Values D with uniQueness

v The D-min-area supr-lattices are ortained from each
Other via rotations By £7/2 and reflections agout the
axes.

v" This defines an equivalence class of sug-lattices with
a aiven triple ({o, {1, l2). We say we have uniQueness in
(x) if the equivalence dlass is uniQue. i may contain a
single suslattice (m = 1) or two suglattices (m =2) or
four (m = 4.
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Values D with non-uniQueness

The noN—uniQueness N (x) has a two-fold character:

(D There may Be more than one triple (¢, ¢1,¢2)
solving (¥). We found one attainarle D
with S different triples.

(i For a aiven triple (4o, {1, l2) there may re
several ways to inscrire the trianale into
Z?, which cenerates several equivalence
cdasses. So far, the maximal numveer of
eQuivalence classes orserved is 4.

Uniqueness and roth non-—uniQueness £orms have
infinite occurrences of D.



- Frame (A): D? =425, (S = 375). The optimal squared
side lenaths are 425,425,450, with two
non-equivalent 72 implementations.

- Frame (B): D2 =65, (S = 60). The optimal sQuared
side-lenaths are 65, 65,80 (2lue) and 68, 68,72 (Black);
BOth trianales adwit a uniQue implementation up
to Z’-symmetries.
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72: Solutions to the optimization proglem

v 1$ 5/2 s the minimal area in (x) then S aives
the numeer of the lattice points in a
fundamental paralleloaram of a sus-lattice.

v K is dear that S < D? But in fact for all D
with 20 < D? < 9990017 we have S < D?; as
our computations show, the difference
D? — S arows monotonically with D.

v Another feature is that side-lenath 4 is
often > D: we call the value of D with this
pProperty non-tessellating



72: A count of periodic around states.

For D? =25: 12 =29, 2 = 26, I3 = 25. For D? =32 I? =36, /3 = I3 = 34



7?: Extreme Giggs measures: uniQueness in ()

Theorem 3.

Suppose that for a given D, the optimization problem (x) produces a
unique triple ({g, /1, ¢2), unique equivalence class (hence no
sliding). Then the number of extreme Gibbs measures for u large
enough matches the number of the periodic ground states: it equals

mS

where

(@m=1ifD =1, /2 (here the fundamental parallelogram is a
square),

(b) m = 2 if the fundamental triangle is isosceles,
(c) m = 4 if the fundamental triangle is non-isosceles.

The extreme Gibbs measures are generated by periodic ground states.




72: Extreme Gigks measures: non-uniQueness in (x)

INn general, not all periodic around states cenerate
extreme Girks measures only the dominant ones.



72: Extreme Gigks measures: non-uniQueness in (x)

In @eneral, not all periodic around states cenerate
extreme GiRRs measures only the dominant ones.

Theorem 4.

Suppose that D is non-sliding and generates non-uniqueness in (k). If
there exist M > 1 dominant types of periodic ground states then, for a
large u, the number of extreme Gibbs/DLR measures is

M
S m.
Jj=1

where m; € {2,4} is determined by the shape of the dominant
fundamental triangle (isosceles or not).




The Queen of math, again

\We can prove that the classes of D? which are
referred to in Theorems 3 and 4 are roth infinite



The Queen of math, aaain

\We can prove that the classes of D? which are
referred to in Theorems 3 and 4 are roth infinite

The idea is tO approximate an equilateral trianale By
Z?—trianales. i leads 10 norm equations in the cydlotomic
intecer rina Z[(], where ( is a primitive [2th root of
unity.

2 =352 L S

Here r is aiven positive intecer. A £amous example is
the Pell equation, with r = 1.



The Queen of math, aaain

\We can prove that the classes of D? which are
referred to in Theorems 3 and 4 are roth infinite

The idea is tO approximate an equilateral trianale By
Z?—trianales. i leads 10 norm equations in the cydlotomic
intecer rina Z[(], where ( is a primitive [2th root of
unity.

2 = 352 L e

Here r is civen positive integer. A £amous example is
the Pell equation, with r = 1.

The solutions to the Norm equation have to re
analyzed BOth ceometrically and alaerraically. This leads
to infinite sequences of values of D of Both types.



72: Extreme Gigks measures: non-uniQueness in (x)

The smallest values of D? from Theorem 4 are

D? = 65,130, 324. The analysis Of dominance can ge done
OnN a case-Ry-case Rasis, By counting local excitations
where we vacate some occupied sites in a periodic
around state and attempt to insert 'new particles’
while maintaining admwissigility.



7?2, D?> =130 = : local excitations







W = H,, Class |

First we divide the values D2 = a2 + b2 + ab in
t0o two classes:

1. 3[B>
fogEl /0

In Class | the proelem reduces to the case of the
trianaular lattice A,. It leads to a further division into
3 surclasses Based on the same Eisenstein prime
decomposition of D. K yields the respective formulas
for the Nnumerer of extreme Girks measures

2 4 2 i
2 2 2 E 2
§D 5 gD , gD J:1 I”J', V\J“tk ”7j S {172}



W = H,, Class |

OO
grgeninses

{ AL\
CHEER

AN

D? = 48 left frame,

D? = 39 right £rame.



W = H,, Class |l

Class |l adwits a further partition

— There are forming a finite
suRQlass:

D? =1,4,7,13,16,28, 49, 64,67, 97,133, 157, 256.

— And there is an infinite surclass containing all
remaining Loschian numeers not divisigle By 3.

For non-exceptional values D, minimal-area trianales
can Be found via a discrete optimization proglem.
However, they do not aenerate a tiling of H,. Hence,
one needs tO consider sue-optimal trianales which
tessellate H,. The first amona them is an eauilateral
D*—trianale, where D* > D is the closest value with

3| D*. Then the formulas for Class | apply with D*
replacing D.



W = H,, Exceptional non-sliding values

Exceptional non-sliding values of D

D? =1,13,28.49,64,97. 157, 16, 256,

Ground states: involve non-equilateral and equilateral triangles in
specific combinations/arrangements.

These values of D require a case-By-case analysis, with
the help of a computer. (Informally we call them a Z00.)

Each around state cenerates an extreme Girgs
measure for u larae enouch. Except for D? = 67: here
aGain we have an issue Of dominance, and some
periodic around states are suppressed.



W = H,, Exceptional non-sliding examples

\"}"\ "A"Q v
LPSINS g
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W = H,, Exceptional values: slidina

Sliding

D? = 4 left £rame D? =7 right frame



