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= . i | Pu(2) =det(zl — Jy) = 2V, roots=0.
O ... .- 0 1
0 -+ oo ... 0

Iy = UndnUf, where Uy is random unitary matrix, Haar-distributed. Of
course, Spec(Jy)=Spec(Jn).
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L == .,
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Goes back to Trefethen et als - pseudo-spectrum.
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Background

A probability measure on C is characterized by its logarithmic potential

Lol = /log |z — x| p(dx).
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Background

A probability measure on C is characterized by its logarithmic potential

Lol = /log |z — x| p(dx).

Further, pn — 1 weakly if and only if £,,,(z) — £,(z), for Lebesgue
almost every z € C.

For the empirical measure Ly = N~* Ef\; 0,4 of eigenvalues of a
matrix A, we have I

iz = % logdet(z — A)(z — A)*.

Thus, spectrum computations involves the determinant of a family of
Hermitian matrices built from Al
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Noise Stability

Sniady’s theorem

Assume Ay = a.
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Noise Stability

Sniady’s theorem

Assume Ay = a. Define Ay(t) = Ay + IN~1/2Gy.

Theorem (Sniady '02)

lim¢_o limpy_ oo Lﬁ“’(t) = va. (Brown measure - given by log-potential of
a)

In particular, some sequence of noise regularizes empirical measure to
the Brown measure.

Builds on regularization ideas of Haagerup.
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Sniady’s theorem
Assume Ay = a. Define Ay(t) = Ay + IN~1/2Gy.

Theorem (Sniady '02)

lim¢_o limpy_ oo Lﬁ”m = va. (Brown measure - given by log-potential of
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In particular, some sequence of noise regularizes empirical measure to
the Brown measure.

Builds on regularization ideas of Haagerup.
Main ingredient of proof compares the singular values L 4(t) = (o,...,0%) of
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increasing,
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Theorem (Sniady '02)

lim¢_o limpy_ oo Lﬁ”m = va. (Brown measure - given by log-potential of

a)
In particular, some sequence of noise regularizes empirical measure to
the Brown measure.

Builds on regularization ideas of Haagerup.
Main ingredient of proof compares the singular values L 4(t) = (o,...,0%) of
Ay + tN=1/2Gy to the singular values Zo(t) = (o1,...,on) of tN~1/2Gy; by
coupling the SDEs for the evolution of X, ¥ 4, for f coordinate-wise
increasing,

N="tr(F(Za(t)) > N~ 'tr(F(Zo(1))).
This gives required control of the determinant; Second part of theorem
follows by diagonalization argument.
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Noise Stability

Sniady’s theorem
Assume Ay = a. Define Ay(t) = Ay + IN~1/2Gy.

Theorem (Sniady '02)

lim¢_o limpy_ oo Lﬁ”m = va. (Brown measure - given by log-potential of

a)
In particular, some sequence of noise regularizes empirical measure to
the Brown measure.

Builds on regularization ideas of Haagerup.
Main ingredient of proof compares the singular values L 4(t) = (o,...,0%) of
Ay + tN=1/2Gy to the singular values Zo(t) = (o1,...,on) of tN~1/2Gy; by
coupling the SDEs for the evolution of X, ¥ 4, for f coordinate-wise
increasing,

N="tr(F(Za(t)) > N~ 'tr(F(Zo(1))).
This gives required control of the determinant; Second part of theorem
follows by diagonalization argument.
How can we take t = ty — 0?
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Noise Stability

Regularization by noise

Consider the nilpotent N-by-N matrix
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Noise Stability

Regularization by noise

Consider the nilpotent N-by-N matrix

0 1 0 0

0O 0 1 0 0
Iy =
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0 e 0

Eigenvalues \; = 0, empirical measure n=' 3" 4. = do.
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Noise Stability

Regularization by noise Il
Set~y > 1/2.
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Regularization by noise Il
Set~y > 1/2.
Theorem (Guionnet-Wood-Z. '14)

Set Ay = Jy + N~ Gy, empirical measure of eigenvalues LY. Then L},

converges weakly to the uniform measure on the unit circle in the
complex plane.
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Thus, L;(,’V = g but for a vanishing perturbation, Lﬂ has different limit.
Earlier version - Davies-Hager 09
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Regularization by noise Il
Set~y > 1/2.
Theorem (Guionnet-Wood-Z. ’14)

Set Ay = Jy + N~ Gy, empirical measure of eigenvalues LY. Then L},
converges weakly to the uniform measure on the unit circle in the
complex plane.

Thus, L;(,’V = g but for a vanishing perturbation, Lﬂ has different limit.
Earlier version - Davies-Hager 09
(Generalization to i.i.d. Gy: Wood *15.)
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What is going on?
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What is going on?

0o 1 0 0
0O 0 1 0 0
Jg =
0 0 1
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Characteristic polynomial:

Pn(z) = det(z] — Jy) = ZN + 6.
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What is going on?

0o 1 0 0
0o 0 1 0 0
J;EI:
0 0 1
SN )

Characteristic polynomial:

Pn(z) = det(z] — Jy) = ZN + 6.

Roots: {6/ N e2™/NN .
S5
If 5 = O then LI = bo.

S5
If 55 — 0 polynomially slowly then L,J\;VN converges to uniform on circle.
Why is this particular perturbation picked up?

General criterion - Guionnet, Wood, Z.
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Noise Stability-Maximal Nilpotent

a € Ais regular if for ¢ smooth, compactly supported,

6Ii_r:wo/CAw(z) </OE Iogxduj(x)) dz=0

(v5 - spectral measure of |a — z|).
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a € Ais regular if for ¢ smooth, compactly supported,

e“—rPo/CAw(z) (/OE Iogxduj(x)) dz=0

(v5 - spectral measure of |a — z|).

Theorem (Guionnet-Wood-Z. '14)

Assume: Ay = a, regular. LY, — v, weakly.
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Noise Stability-Maximal Nilpotent

a € Ais regular if for ¢ smooth, compactly supported,

6Ii_r:wo/(CAw(z) (/OE Iogxduj(x)) dz=0

(v5 - spectral measure of |a — z|).

Theorem (Guionnet-Wood-Z. '14)

Assume: Ay = a, regular. Lf, — v, weakly. v > 1/2. Then,
LANENTIGN . weakly, in probability.
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Noise Stability-Maximal Nilpotent

a € Ais regular if for ¢ smooth, compactly supported,

6Ii_r:wo/CAw(z) </OE Iogxduj(x)) dz=0

(v5 - spectral measure of |a — z|).

Theorem (Guionnet-Wood-Z. '14)

Assume: Ay = a, regular. Lf, — v, weakly. v > 1/2. Then,
LANENTIGN . weakly, in probability.

The proof uses the regularity (of the limit) to truncate the singularity of
the log... and depends crucially on convergence to v;.
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Noise Stability-Maximal Nilpotent

a € Ais regular if for ¢ smooth, compactly supported,

6Ii_nzwo/CAw(z) </OE Iogxduj(x)) dz=0

(v5 - spectral measure of |a — z|).

Theorem (Guionnet-Wood-Z. '14)

Assume: Ay = a, regular. Lf, — v, weakly. v > 1/2. Then,
LANENTIGN . weakly, in probability.

The proof uses the regularity (of the limit) to truncate the singularity of
the log... and depends crucially on convergence to v,. But it is not
useful in maximally nilpotent example, since L',‘\‘, =0 /4 va =gl
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Noise Stability-Maximal Nilpotent

Theorem (Guionnet-Wood-Z. ’14)

Assume: Ay = a, regular,
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Noise Stability-Maximal Nilpotent

Theorem (Guionnet-Wood-Z. ’14)

Assume: Ay = a, regular,||Ey|| — 0 polynomially. Lf\‘,"’*EN 2
weakly.
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Noise Stability-Maximal Nilpotent

Theorem (Guionnet-Wood-Z. ’14)

Assume: Ay = a, regular,||Ey|| — 0 polynomially. Lf\‘,"’*EN 2
weakly. Then LV ™" 1, weakly, in probability.
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Noise Stability-Maximal Nilpotent

Theorem (Guionnet-Wood-Z. ’14)

Assume: Ay = a, regular,||Ey|| — 0 polynomially. Lf\‘,"’*EN 2
weakly. Then LV ™" 1, weakly, in probability.

So it is enough to find a perturbation with correct limiting behavior!
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Noise Stability-Maximal Nilpotent

Theorem (Guionnet-Wood-Z. ’14)

Assume: Ay = a, regular,||Ey|| — 0 polynomially. LQNJFEN 2
weakly. Then LV ™" 1, weakly, in probability.

So it is enough to find a perturbation with correct limiting behavior!
Nilpotent example uses a- unitary element (which is regular), Ey is
(N, 1) element.
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Noise Stability

Noise Stability-Nilpotent matrices

Maybe this always works?
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Maybe this always works? J, - maximally nilpotent of dimension b.

Jp
Jb
Jon =

Jb
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Noise Stability-Nilpotent matrices

Maybe this always works? J, - maximally nilpotent of dimension b.

Jp
Jb
Jon =

Jb

Theorem (Guionnet-Wood-Z ’14)

If b= alog N and ~ is large enough, then the spectral radius of Jo n + N~7 G
is uniformly strictly smaller than 1. In particular,

Jalo N=G
[—[\7| gN,NJF N 7L> 681

even though Js10g n,n CONVerges in x moments to random unitary!
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Noise Stability-Block Nilpotent

A generalization: B' = B/(N) - Jordan blocks, dimension a;(N) log N,
eigenvalue c;(N).
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Noise Stability-Block Nilpotent

A generalization: B' = B/(N) - Jordan blocks, dimension a;(N) log N,
eigenvalue c;(N).
B1
B2

>
z
I
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Noise Stability-Block Nilpotent IV

Simulations inconclusive!
‘ ‘
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Noise Stability-Block Nilpotent IV

Simulations inconclusive!
‘ ‘

Analyzed by Feldheim-Paquette-Z. (2015).
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Noise Stability

More general models?

ZJ T 2J |
=075
: y=1.75
1f 1f |
. KO
1l 1L i
72—[ Il Il Il | 72—[ Il Il Il |
-2 -1 0 1 2 -2 -1 0 1 2

Figure: The eigenvalues of Jy + J2 + N~ Gy, with N = 4000 and various .
On left, actual matrix. On the right, Un(Jn + J3) Uy,
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Noise Stability

More general models?

Figure: The eigenvalues of Dy + Jy + N=7 Gy, with N = 4000 and various ~.
Top: Dn(i,i) = —1 +2i/N. Bottom: Dy i.i.d. uniform on [-2,2]. On left, actual
matrix. On the right, Un(Dn + Jn) Uy



More general models

Theorem (Basak, Paquette, Z.’17)

Tn=Dn+Jn, My =Ty + NGy, v > 1/2.
d; fid uniform on [—1,1].
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More general models

Theorem (Basak, Paquette, Z.’17)

Tn=Dn+Jn, My =Ty + NGy, v > 1/2.
d; fid uniform on [—1,1].

Then Ly — u, u explicit: log-potential of . at z is (E log |z — dy|) v 0).

Ofer Zeitouni

Small Perturbations 15/29



Noise Stability

More general models

Theorem (Basak, Paquette, Z.’17)
Tn = Zf{:o a,-J,"V (Toeplitz, finite symbol, upper triangular). Then,

k
Ly — Law ofz al
i=0

where U is uniform on unit circle.
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Noise Stability

More general models

Theorem (Basak, Paquette, Z.’17)
Tn = Zf{:o a,-J,"V (Toeplitz, finite symbol, upper triangular). Then,

k
Ly — Law ofz al
i=0

where U is uniform on unit circle.

Extends to twisted Toeplitz Ty(i,j) = ai(j/N), i =1, ..., k, a; continuous:

1 k
Ly — / Law of Z a(hU'
0 i=0
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Noise Stability

More general models

Theorem (Basak, Paquette, Z.’17)
Tn = Zf{:o a,-J,"V (Toeplitz, finite symbol, upper triangular). Then,

k
Ly — Law ofz al
i=0

where U is uniform on unit circle.

Extends to twisted Toeplitz Ty(i,j) = ai(j/N), i =1, ..., k, a; continuous:
1 k ]
Ly — / Law of Za,-(t)U’
v i=0

Confirms simulations and predictions (based on pseudo-spectrum) of
Trefethen et als. Some two-diagonal Toeplitz cases studied by Sj6strand and
Vogel (2016)
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BPZ

Recall Ty = My + N=7Gp, v > 1/2, Gy complex Gaussian
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BPZ

Recall Ty = My + N=7Gp, v > 1/2, Gy complex Gaussian

Write zI — My = UXnV*, Ly - diagonal, singular values, arranged
non-decreasing, and then

=== (™ g, ) vrav= (X %)

where Sy has dimension N* x N*,
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BPZ

Recall Ty = My + N=7Gp, v > 1/2, Gy complex Gaussian

Write zI — My = UXnV*, Ly - diagonal, singular values, arranged
non-decreasing, and then

Z:ZN:(SN BN)7 N_'YGN:())E; §i>

where Sy has dimension N* x N*,
Define N* as

sup{i >1:%j(2) < e NI(N—-1)"3}, ey=N"
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BPZ

Recall Ty = My + N=7Gp, v > 1/2, Gy complex Gaussian
Write zI — My = UXnV*, Ly - diagonal, singular values, arranged
non-decreasing, and then

Z:ZN:(SN BN)7 N_’YGN:())E; §i>

where Sy has dimension N* x N*,
Define N* as

sup{i >1:%j(2) < e NI(N—-1)"3}, ey=N"

Theorem (Basak-Paquette-Z. 17 - Deterministic equivalence)
If N* = o(N/ log N) then

log |detTn| — 1N log |detBy| — O.

2=
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BPZ

Recall Ty = My + N=7Gp, v > 1/2, Gy complex Gaussian
Write zI — My = UXnV*, Ly - diagonal, singular values, arranged
non-decreasing, and then

F=mv= (g, ). wen=(5 %)

where Sy has dimension N* x N*,
Define N* as

sup{i >1:%j(2) < e NI(N—-1)"3}, ey=N"

Theorem (Basak-Paquette-Z. 17 - Deterministic equivalence)
If N* = o(N/ log N) then

1 1
N log |detTn| — N log |detBy| — O.

So only need to understand small singular values of M.
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Banded Toeplitz

Non triangular Toeplitz, non Gaussian noise

e E32Gn(i,)? = O(N?)

e There is 8 = B(a, ) so that for any My deterministic with ||[My|| = O(N~?),
P(Smin(Mn + N=7Gy) < N=%) = o(1)

Ofer Zeitouni
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Banded Toeplitz

Non triangular Toeplitz, non Gaussian noise

e E32Gn(i,)? = O(N?)

e There is 8 = B(a, ) so that for any My deterministic with ||[My|| = O(N~?),
P(Smin(Mn + N=7Gy) < N=%) = o(1)

Theorem (Basak, Paquette, Z. ’18)
Tn = Y2 @iy (Toeplitz, finite symbol, Jy' := JJj.) Then,

Ko
. .
L,CN+N O _y Law of E a;lU'
i=—ki

where U is uniform on unit circle.
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Non triangular Toeplitz, non Gaussian noise

« £ Gn(i,j)2 = O(N?)
e There is 8 = B(«, ) so that for any My deterministic with || My|| = O(N—%),
P(Smin(My + N=7Gy) < N=%) = o(1)

Theorem (Basak, Paquette, Z. ’18)
Tn = Y2 @iy (Toeplitz, finite symbol, Jy' := JJj.) Then,

Ko
. .
L,CN+N O _y Law of E a;lU'
i=—ki

where U is uniform on unit circle.

Proof based on a two step approximation (related to GWZ14) - first find local
(noisy) perturbation that gives required limit, then show that global noise does
not destroy it.
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Banded Toeplitz

Non triangular Toeplitz, non Gaussian noise

« £ Gn(i,j)2 = O(N?)
e There is 8 = B(«, ) so that for any My deterministic with || My|| = O(N—%),
P(Smin(My + N=7Gy) < N=%) = o(1)

Theorem (Basak, Paquette, Z. ’18)
Tn = Y2 @iy (Toeplitz, finite symbol, Jy' := JJj.) Then,

Ko
. .
L,CN+N O _y Law of E a;lU'
i=—ki

where U is uniform on unit circle.

Proof based on a two step approximation (related to GWZ14) - first find local
(noisy) perturbation that gives required limit, then show that global noise does
not destroy it.

Related (different methods, Gaussian noise - Grushin problem) - Sjéstrand
and Vogel ‘19.

Ofer Zeitouni Small Perturbations 18/29



Banded Toeplitz

Proof ingredients

Theorem (Replacement principle - after GWZ)

An - deterministic, bounded operator norm. Ay and Gy - independent
random matrices. Assume

(a) Gn and Ay are independent. || An|| < N~ whp and Gy noise matrix as
before.

(b) For Lebesgue a.e. z € B:(0, Ry), the empirical distribution of the
singular values of Ay — zly converges weakly to the law induced by
|X — z|, where X ~ u and suppu C Bc(0, Ro/2).

(c) For Lebesgue a.e. every z € B:(0, Ry),

EWA(Z) — L,(2), as N — oo, in probability. (1)

Then, for any v > 1, for Lebesgue a.e. every z € Bc(0, Ry),

CL#N—WG(Z) — L,(2), as N — oo, in probability. (2
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Proof ingredient I

Theorem

Let Ty be any N x N banded Toeplitz matrix with a symbol a. Then, there
exists a random matrix Ay with

P(llAn] = N7*) = o(1), (3)

for some ~o > 0, so that L,(ﬁ A converges weakly, in probability, to jia.
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Banded Toeplitz

Proof ingredient I

Theorem

Let Ty be any N x N banded Toeplitz matrix with a symbol a. Then, there
exists a random matrix Ay with

P(llAn] = N7*) = o(1), (3)

for some ~o > 0, so that L,(ﬁ A converges weakly, in probability, to jia.

This works for Toeplitz with banded symbol, but not for twisted Toeplitz! Main
issue - Toeplitz determinant of un-perturbed matrix requires work, e.g.
Widom’s theorem.
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Banded Toeplitz

Grushin’s problem

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.

Ofer Zeitouni Small Perturbations 21/29



Banded Toeplitz

Grushin’s problem

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.
A = Ay matrix, singular values t; < t>... < ty.

Ofer Zeitouni Small Perturbations 21/29



Grushin’s problem

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.

A = Ay matrix, singular values t; < ... < ty. G = Gy perturbation, § = oy
small. Want eigenvalues of A+ §G.
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An alternative, developed by Sjéstrand and Vogel: the Grushin problem.
A = Ay matrix, singular values t; < ... < ty. G = Gy perturbation, § = oy
small. Want eigenvalues of A+ §G.

Let {e;} be eigenvectors of A*A, {f;} of AA*, with

A'fi = tie;, Aej = tif;
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Grushin’s problem
An alternative, developed by Sjéstrand and Vogel: the Grushin problem.
A = Ay matrix, singular values t; < ... < ty. G = Gy perturbation, § = oy

small. Want eigenvalues of A+ §G.
Let {e;} be eigenvectors of A*A, {f;} of AA*, with

A'fi = tie;, Aej = tif;
Let {0;} be standard basis. Fix M > 0 integer (may depend on N) - these will

be eventually the small singular values, ie all singular values of A except for
smallest M are above a strictly positive threshold a.
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Grushin’s problem

An alternative, developed by Sjéstrand and Vogel: the Grushin problem.

A = Ay matrix, singular values t; < ... < ty. G = Gy perturbation, § = oy
small. Want eigenvalues of A+ §G.

Let {e;} be eigenvectors of A*A, {f;} of AA*, with

A'fi = tie;, Aej = tif;

Let {0;} be standard basis. Fix M > 0 integer (may depend on N) - these will
be eventually the small singular values, ie all singular values of A except for
smallest M are above a strictly positive threshold «.

M M
Ry =) doe, R.=) fod,
i=1

i=1

p=(2 F).cvuc Vv bijection!
R. 0
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Banded Toeplitz

Grushin’s problem

We have

with

N 1 M
E= :E:: E;E%'O ﬂﬁ lE:F = :E:: €jo 67a
M-+1 1

M M
E = diof Ey=—Y t5o0.
1 1
and the norm estimates

I1E(2)] <

Q=

Ofer Zeitouni Small Perturbations

N
, Edl=1, |E+l<a, |dePP=]] &

M1

22/29



Banded Toeplitz

Noisy Grushin problem

A =A+0G, 0<i<1.
5
pi— (A A-) . oM eV xeM
R, 0
Applying £ = P~ from the right:
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Banded Toeplitz

Noisy Grushin problem

A =A+6G, 0<d<1.

4
P“:(é %):CNXCMHCNXCM
+

Applying £ = P~ from the right:

PIE = Inym + <5€E 5GOE+)
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Banded Toeplitz

Noisy Grushin problem

A =A+6G, 0<d<1.

4
P“:(é %):CNXCMHCNXCM
+

Applying £ = P~ from the right:

PIE = Inym + <5€E 5GOE+)

Suppose that §||Glla~" < 1/2, then

5 prdred _ = E(GE)" (EG)E, (B EI
=1 *“;( (E (GE)" E_(GE)y-'GE,) ~\E? E7, )
IE° = IE(1 +6GE) Y| <2 ", |EQ| < 2,|E° | < 2,||E2y — E_ 4[| < a.
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Noisy Grushin problem

A =A+6G, 0<d<1.

5
po= (A P ovuem Ve
R, 0
Applying £ = P~ from the right:

PIE = Inym + <5€E 5GOE+)

Suppose that §||Glla~" < 1/2, then

5 _ (piy—1 _ s\ ( E(GE)" (EG)"Ey _ (B E}
== ;(*5) (E(GE)” e (GEy-'Ge, ) ~\e2 B2, )
IE° = IE(1 +6GE) || <207 IEI < 2, | E2| < 2, | EL, — E4 € .

The Schur complement formula applied to P° and £° shows that

log | det A°| = log | det P°| + log | det E° _ |.
Small Perturbations 23/29



Noisy Grushin -ct'd

S5 S5
g =P 1= (; E’;:;f ),Iog\detAé| = log | det P°| + log | det 2 _ |
- —+
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Noisy Grushin -ct'd

g8 = (73'5)71 = (E; EE;' ),Iog\detAé| = Iog\detPS\ +Iog\detEi+\
d
|log | det P°| — log | det P°|| = ‘ / Tr(E" T —P7)dr

< 2a~"5N| G].

B ET ET\ (G 0
r(E E) 6 e
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Noisy Grushin -ct'd

g8 = (73'5)71 = (E; EE;' ),Iog\detAé| = Iog\detPS\ +Iog\detEi+\
d
|log | det P°| — log | det P°|| = ‘ / Tr(E" T —P7)dr

< 2a~"5N| G].

B ET ET\ (G 0
r(E E) 6 e

1 1
=1 . <2a7" :
N og|det P°| N og|det73|‘ < 2a7 '] G

So,

Ofer Zeitouni Small Perturbations 24/29



Noisy Grushin -ct'd

e (S E’f;f ),bg\detAﬂ = log | det P°| + log | det 2 _ |
1) 0 d T
|log | det P°| — log | det P°|| —‘ / Tr(E" T —P7)dr
_ ET EL G 0 _q
= ‘5)‘%/ Tr <ET E:Jr) . <0 O> dr| <2a” 'ON| G
So, |~ | |d t7>5|—l| |det P|| < 207 16| G|
o, N og | de N og | de < 2a .

But |[E°, || < 2a, thus,
log | det A°| < log | det P| + M|log2a| + 2o~ 'N||G||.
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Noisy Grushin -ct'd

S5 S5
£ =) = (1’; E’?:s+ )7|0g\detAé| = log | det P’ | + log | det £ |

9 prygr

|Iogdet735|—logdet730||—‘ / Tr(E" T

B ET ET\ (G 0
r(E E) 6 e

1 1
=1 . <2a7" :
N og|det P°| N og|det73‘ < 2a7 '] G

But |[E°, || < 2a, thus,

So,

log | det A°| < log | det P| + M|log2a| + 2o~ 'N||G||.

Complementary lower bound requires just a bit more work.
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Noisy Grushin -ct'd

- ES  E?
g8 = (735) 1- (ES E6+ ),Iog\detAé| :Iog\det?’é\ +Iog\detEi+\

9 prygr

|Iogdet735|—logdet730||—‘ / Tr(E" T

B ET ET\ (G 0
r(E E) 6 e

— — — < .
Nlog|det73 | Nlog|det73‘_2oz o||G|

But |[E°, || < 2a, thus,

< 2a~"5N| G].

So,

log | det A°| < log | det P| + M|log2a| + 2o~ 'N||G||.

Complementary lower bound requires just a bit more work.
Since det P is like erasing the small singular values of A, this gives a version
of the deterministic equivalence lemma for general noise (Vogel-Z. '20)
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Banded Toeplitz

Qutliers
v+ NGy JN—I-J,%I—I—N_’YGN
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Banded Toeplitz

Qutliers
v+ NGy JN—I-J,%I—I—N_’YGN

Outliers are random. What is structure of outliers?
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Banded Toeplitz

Outliers

v+ NGy JN—I-J,%I—I—N_’YGN

2

-1 -05 0 0.5 1 -2 7‘1 6 i Zr

Outliers are random. What is structure of outliers?
e Jy + N=7Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
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Banded Toeplitz

Outliers

v+ NGy JN—I-J,%I—I—N_’YGN

2

-1 -05 0 0.5 1 -2 7‘1 6 i Zr

Outliers are random. What is structure of outliers?
e Jy + N=7Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o Iy + JZ + N-7Gn: Write zI + Jy + JZ = (M(2) — In))(A2(2) — In):
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Banded Toeplitz

Outliers

v+ NGy JN—I-J,%I—I—N_’YGN

2F

-1 -05 0 0.5 1 -2 7‘1 6 i Zr

Outliers are random. What is structure of outliers?
e Jy + N=7Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o Iy + JZ + N-7Gn: Write zI + Jy + JZ = (M(2) — In))(A2(2) — In):

@ No outliersin {z : |\i(z)| > 1,i=1,2}
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Banded Toeplitz

Outliers

v+ NGy JN—I-J,%I—I—N_’YGN

2F

-1 -05 0 0.5 1 -2 7‘1 6 i Zr

Outliers are random. What is structure of outliers?
e Jy + N=7Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o Iy + JZ + N-7Gn: Write zI + Jy + JZ = (M(2) — In))(A2(2) — In):

@ No outliersin {z : |\i(z)| > 1,i=1,2}

@ In{z:|A1(2)| > 1 > |X2(2)|}, outliers are roots of a Gaussian field, limit
of terms involving a single Gaussian in expansion of char. pol.
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Banded Toeplitz

Outliers

v+ NGy JN—I-J,%I—I—N_’YGN

2F

-1 -05 0 0.5 1 -2 7‘1 6 i Zr

Outliers are random. What is structure of outliers?
e Jy + N=7Gy: outliers are zeros of a limiting Gaussian field, all inside disc.
o Iy + JZ + N-7Gn: Write zI + Jy + JZ = (M(2) — In))(A2(2) — In):
@ Nooutliersin {z: |\(2)| >1,i=1,2}
@ In{z:|A1(2)| > 1 > |X2(2)|}, outliers are roots of a Gaussian field, limit
of terms involving a single Gaussian in expansion of char. pol.

@ In{z:1>|X\(2)| > |X2(2)|}, outliers are roots of limit of terms involving
a product of two Gaussians in expansion of char. pol.
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Banded Toeplitz

Outliers
o Toeplitz, finite symbol a()\) = Zf;,ﬁ aj\, set
ko . ki+ko
z+ Y aX =x7" T (Ai(2) = A), Al = Al
i=— ki i=1
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Banded Toeplitz

Outliers
o Toeplitz, finite symbol a()\) = Zf;,ﬁ ai\, set
ko ‘ ki+ko
z+ Y aX =x7" T (Ai(2) = A), Al = Al
i=— ki i=1

Let dy = do(z) be such that [A\g, | > 1 > |Ag 1], and set
d=d(z) =k —dy. Let Dy ={z € C:d(z) = k}.
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Outliers
o Toeplitz, finite symbol a()\) = Zf;,ﬁ aj\, set
ko ‘ ki+ko
z+ Y aX =x7" T (Ai(2) = A), Al = Al
i=— ki i=1

Let dy = do(z) be such that [A\g, | > 1 > |Ag 1], and set

d=d(z) =k —dy. Let Dy ={z € C:d(z) = k}.

Let T(a) denote the (infinite, band) Toeplitz operator of symbol a()\),
with spectrum D..(a) (=a(S") U Dy).

Let Ly be the empirical measure of eigenvalues of Ty + N~7Gy.
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Banded Toeplitz

Outliers
o Toeplitz, finite symbol a()\) = Ef;,ﬁ aj\, set
ko . ki+ko
z+ Y aX =x7" T (Ai(2) = A), Al = Al
i=— ki i=1

Let dy = do(z) be such that [A\g, | > 1 > |Ag 1], and set

d=d(z) =k —dy. Let Dy ={z € C:d(z) = k}.

Let T(a) denote the (infinite, band) Toeplitz operator of symbol a()\),
with spectrum D..(a) (=a(S") U Dy).

Let Ly be the empirical measure of eigenvalues of Ty + N~7Gy.

Theorem (Basak-Z. 19 - No eigenvalues outside limiting support)

Fix e > 0. Then,
P(Ln(Dxs(a))= 0) = N—soo 1.
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Banded Toeplitz

Outliers
o Toeplitz, finite symbol a()\) = Zf;,ﬁ aj\, set
ko . ki+ko
z+ Y aX =x7" T (Ai(2) = A), Al = Al
i=— ki i=1

Let dy = do(z) be such that [A\g, | > 1 > |Ag 1], and set

d=d(z) =k —dy. Let Dy ={z € C:d(z) = k}.

Let T(a) denote the (infinite, band) Toeplitz operator of symbol a()\),
with spectrum D..(a) (=a(S') U Dy).

Let Ly be the empirical measure of eigenvalues of Ty + N~7Gy.

Theorem (Basak-Z. '19 - No eigenvalues outside limiting support)

Fix e > 0. Then,
P(Ln(Dxs(a))= 0) = N—soo 1.

This does not mean there are no outliers, as a(S') € D..(a).
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Banded Toeplitz

Outliers

Z+ Y0 aX = AR TR (A(2) — A), A > i,
[Agpl > 1> [Agpr1l, d=d(2) = ki — do, Dk = {z € C: d(2) = k}.
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Banded Toeplitz

Outliers

Z+ 32 ax = xR [TEe(A (z) = A), Nl = (A,
[Agpl > 1> [Agpr1l, d=d(2) = ki — do, Dk = {z € C: d(2) = k}.
Fork #0,let Ayx = {z € Dk : Zis an eigenvalue of Ty + N7 Gp}.
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Outliers

Z+ 32 ax = xR [TEe(A (z) = A), Nl = (A,
[Agpl > 1> [Agpr1l, d=d(2) = ki — do, Dk = {z € C: d(2) = k}.
Fork #0,let Ayx = {z € Dk : Zis an eigenvalue of Ty + N7 Gp}.

Theorem (Basak-Z ‘19 - Outlier fields)

For each k + 0, there exists a random set Ny, finite on compact
subsets of Dy, so that Ay x converges in distribution on compact
subsets of Dy to N.
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Banded Toeplitz

Outliers

Z+ 32 ax = xR [TEe(A (z) = A), Nl = (A,
[Agpl > 1> [Agpr1l, d=d(2) = ki — do, Dk = {z € C: d(2) = k}.
Fork #0,let Ayx = {z € Dk : Zis an eigenvalue of Ty + N7 Gp}.

Theorem (Basak-Z ‘19 - Outlier fields)

For each k + 0, there exists a random set Ny, finite on compact
subsets of Dy, so that Ay x converges in distribution on compact
subsets of Dy to N.

The random sets N are constructed as follows. There are random
fields §,((L), polynomials in the \;(z), whose coefficients are specific
minors of Ey of size |k| + ko (which minors appear admits a
combinatorial description).
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Banded Toeplitz

Outliers
Z+ Y2 aN = xR [T (z) —A), AL > il
[Agpl > 1> [Agpr1l, d=d(2) = ki — do, Dk = {z € C: d(2) = k}.

Fork #0,let Ayx = {z € Dk : Zis an eigenvalue of Ty + N7 Gp}.

Theorem (Basak-Z ‘19 - Outlier fields)

For each k + 0, there exists a random set Ny, finite on compact
subsets of Dy, so that Ay x converges in distribution on compact
subsets of Dy to N.

The random sets N are constructed as follows. There are random
fields §,((L), polynomials in the \;(z), whose coefficients are specific
minors of Ey of size |k| + ko (which minors appear admits a
combinatorial description).

The zero set of 5,((” is denoted A/{”, and admits a distributional limit
Ny as L — co.
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Banded Toeplitz

Outliers
Z+ Y2 aN = xR [T (z) —A), AL > il
[Agpl > 1> [Agpr1l, d=d(2) = ki — do, Dk = {z € C: d(2) = k}.

Fork #0,let Ayx = {z € Dk : Zis an eigenvalue of Ty + N7 Gp}.

Theorem (Basak-Z ‘19 - Outlier fields)

For each k + 0, there exists a random set Ny, finite on compact
subsets of Dy, so that Ay x converges in distribution on compact
subsets of Dy to N.

The random sets N are constructed as follows. There are random
fields §,((L), polynomials in the \;(z), whose coefficients are specific
minors of Ey of size |k| + ko (which minors appear admits a
combinatorial description).

The zero set of 5,((” is denoted A/{”, and admits a distributional limit
Ny as L — co.

Improves on counting estimates of Sjostrand and Vogel (‘19).
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Banded Toeplitz

Outliers

In the particular case of Ty = Jy with Gaussian complex noise:
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In the particular case of Ty = Jy with Gaussian complex noise:
@ No outliers in compact subsets of {z : |z| > 1}.
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Banded Toeplitz

Outliers

In the particular case of Ty = Jy with Gaussian complex noise:
@ No outliers in compact subsets of {z : |z| > 1}.

@ The outliers inside {z : |z| < 1} have, asymptotically, the same
law as zeros of the hyperbolic Gaussian analytic function, i.e.
Y 2o @iz’ with a; i.i.d. standard complex Gaussian.

In particular, the outliers inside the unit disc form a determinental
process, and the first intensity is

__2 1
n(1—[zP)2 =
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Banded Toeplitz

Outliers

In the particular case of Ty = Jy with Gaussian complex noise:
@ No outliers in compact subsets of {z : |z| > 1}.

@ The outliers inside {z : |z| < 1} have, asymptotically, the same
law as zeros of the hyperbolic Gaussian analytic function, i.e.
Y 2o @iz’ with a; i.i.d. standard complex Gaussian.

In particular, the outliers inside the unit disc form a determinental
process, and the first intensity is

__2 1
n(1—[zP)2 =

Computation of intensity first performed by Sjostrand and Vogel (2018).
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Banded Toeplitz

Concluding remarks
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e General twisted Toeplitz symbol :

Expect mixture as in upper triangular case.
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Banded Toeplitz

Concluding remarks

e General twisted Toeplitz symbol :

Expect mixture as in upper triangular case.Main obstacle: compute
determinant of twisted Toeplitz with non-zero winding number.

e Toeplitz with infinite symbol - depends on rate of decay? Grushin
problem based recent breakthrough of Sjéstrand-Vogel

e Eigenvectors - work in progress with Basak and Vogel.
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