NOTES ON SIGMA ALGEBRAS FOR BROWNIAN MOTION COURSE

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

These notes provide some basic facts regarding sigma algebras which arise in our Brownian motion course. We focus on sigma algebras for spaces of real-valued functions. For a deeper discussion see, for instance,

http://www.encyclopediaofmath.org/index.php/Measurable_space and the related articles and books referenced there.

1. SIGMA ALGEBRAS ON FUNCTION SPACES

The space \mathbb{R} comes with its standard topology which we denote by \mathcal{O} (that is, \mathcal{O} is the collection of open sets in \mathbb{R}). It comes also with its Borel sigma algebra which we denote by \mathcal{B} . The Borel sigma algebra is the smallest one containing all open sets (i.e., the sigma algebra generated by \mathcal{O}).

Let I be an arbitrary non-empty set (finite, countable or uncountable). For $x \in I$, the coordinate function T_x is the function $T_x : \mathbb{R}^I \to \mathbb{R}$ defined by $T_x(f) := f(x)$. The set \mathbb{R}^I is naturally endowed with both a topology and a sigma algebra named, naturally, the *product topology* and *product sigma algebra*. The product topology \mathcal{O}^I is the smallest topology making all the (T_x) , $x \in I$, continuous. The product sigma algebra \mathcal{B}^I is the smallest sigma algebra making all the $(T_x), x \in I$, measurable (with respect to the Borel sigma algebra on \mathbb{R}). Slightly more explicitly, a base for the product topology is given by all *open cylinder sets* which are the sets of the form

$$\prod_{x \in I} U_x \quad \text{where } U_x \in \mathcal{O} \text{ and all but finitely many of the } U_x \text{ equal } \mathbb{R}.$$
(1)

Similarly, the product sigma algebra is the smallest sigma algebra containing all *measurable* cylinder sets which are sets of the form

$$\prod_{x \in I} A_x \quad \text{where } A_x \in \mathcal{B} \text{ and all but finitely many of the } A_x \text{ equal } \mathbb{R}.$$
(2)

The product sigma algebra may also be called the sigma algebra of *finite-dimensional distributions* as the cylinder sets (2) exactly correspond to the distributions of finitely many coordinates. A set in the product sigma algebra places restrictions on at most countably many coordinates of I, as the following claim shows.

Proposition 1.1. Let us identify a set $A' \in \mathbb{R}^{I'}$, where $I' \subseteq I$, with the set $A \in \mathbb{R}^{I}$ given by $\{f \in \mathbb{R}^{I} : (f_x)_{x \in I'} \in A'\}$. With this identification we have

$$\mathcal{B}^{I}$$
 is the union of all $\mathcal{B}^{I'}$ over all countable $I' \subseteq I$.

Proof. Let us denote by $\widetilde{\mathcal{B}^{I}}$ the union of all $\mathcal{B}^{I'}$ over all countable $I' \subseteq I$. The fact that $\widetilde{\mathcal{B}^{I}}$ is contained in \mathcal{B}^{I} is an immediate consequence of the definitions. It is also simple to check that $\widetilde{\mathcal{B}^{I}}$ is a sigma algebra. Finally, all coordinate functions $(T_x), x \in I$, are measurable with respect to $\widetilde{\mathcal{B}^{I}}$. Hence $\widetilde{\mathcal{B}^{I}} = \mathcal{B}^{I}$ by the definition of \mathcal{B}^{I} .

Date: February 27, 2014.

Since we are used to Borel sigma algebras, we may define an additional sigma algebra, $\sigma(\mathcal{O}^I)$, which is the smallest one making all sets in the product topology measurable. The question arises whether the two sigma algebras $\sigma(\mathcal{O}^I)$ and \mathcal{B}^I are equal, and if not, which one is more useful. The answer depends on the cardinality of I.

Proposition 1.2. If I is finite or countable then $\sigma(\mathcal{O}^I) = \mathcal{B}^I$. If I is uncountable then \mathcal{B}^I is a strict subset of $\sigma(\mathcal{O}^I)$.

Proof. Let us first show that \mathcal{B}^I is contained in $\sigma(\mathcal{O}^I)$. By the definition of \mathcal{B}^I it suffices to show that all the coordinate functions $(T_x), x \in I$, are measurable with respect to $\sigma(\mathcal{O}^I)$. Indeed, these coordinate functions are continuous, by definition, with respect to \mathcal{O}^I and hence also measurable with respect to $\sigma(\mathcal{O}^I)$.

We now show that if I is finite or countable then $\sigma(\mathcal{O}^I)$ is contained in \mathcal{B}^I . This hinges on the notion of separability. Specifically, the fact that the topology \mathcal{O}^I is second countable for such I(that is, \mathcal{O}^I has a base of *countable* cardinality). The countable base is obtained explicitly as all sets of the form (1) where all the U_x which are not \mathbb{R} are open intervals with rational endpoints. The sets in the countable base are also of the form (2) and hence in \mathcal{B}^I . Since every set in \mathcal{O}^I is the union of sets from the countable base (in particular, a countable union of such sets) we see that \mathcal{O}^I is contained in \mathcal{B}^I , whence $\sigma(\mathcal{O}^I)$ is contained in \mathcal{B}^I .

Finally, let us show that if I is uncountable then $\sigma(\mathcal{O}^I)$ is strictly greater than \mathcal{B}^I . Indeed, the set

$$A = \{ f \in \mathbb{R}^I : \exists x \in I, f(x) \in (-1, 1) \}$$

of all functions having at least one coordinate in (-1, 1) is open, i.e., in \mathcal{O}^{I} (and hence in $\sigma(\mathcal{O}^{I})$) since it is the (uncountable) union of the open cylinder sets $(-1, 1) \times \prod_{x \in I \setminus \{y\}} \mathbb{R}$ over $y \in I$. However, it follows from Proposition 1.1 that the set A is not in \mathcal{B}^{I} (since A does not belong to any of the $\mathcal{B}^{I'}$ for $I' \subseteq I$ countable). \Box

Regarding the usefulness question. For most applications the space \mathbb{R}^{I} with I uncountable is itself not a useful space, being too large to work with. Thus, for such I, neither of the sigma algebras, \mathcal{B}^{I} and $\sigma(\mathcal{O}^{I})$, is too useful.

2. SIGMA ALGEBRAS ON SPACES OF CONTINUOUS FUNCTIONS

Let us now consider the space C(I) of continuous functions $f: I \to \mathbb{R}$, where I is an arbitrary, positive length, interval in \mathbb{R} (possibly unbounded). The space C(I) comes with the supremum metric, $d(f,g) := \sup_{x \in I} |f(x) - g(x)|$ and its associated topology $\mathcal{O}(C(I))$. We again have the coordinate functions $(T_x), x \in I$, given by $T_x : C(I) \to \mathbb{R}, T_x(f) := f(x)$. We may again consider two sigma algebras, $\mathcal{B}(C(I))$, the analog of the product sigma algebra, which is the minimal sigma algebra making all coordinate functions measurable, and $\sigma(\mathcal{O}(C(I)))$, the sigma algebra generated from the open sets in $\mathcal{O}(C(I))$. Similarly to before, the sigma algebra $\mathcal{B}(C(I))$ is generated by the restriction to C(I) of the measurable cylinder sets (2). Thus it may be thought of as the sigma algebra of finite-dimensional distributions on C(I). However, it now has a more economic description.

Proposition 2.1. For any countable dense set $Q \subseteq I$ the sigma algebra $\mathcal{B}(C(I))$ is generated by measurable cylinder sets which place restrictions only on the coordinates of Q. That is, by sets of the form

$$C(I) \cap \left(\prod_{x \in Q} A_x \prod_{x \in I \setminus Q} \mathbb{R}\right) \quad where \ A_x \in \mathcal{B} \ for \ all \ x \in Q.$$
(3)

Having two sigma algebras on C(I), namely $\mathcal{B}(C(I))$ and $\sigma(\mathcal{O}(C(I)))$, we again ask whether these two sigma algebras are equal, and if not, which is more useful. The answer now depends on the topological properties of I.

Proposition 2.2. If I is a compact interval then $\sigma(\mathcal{O}(C(I))) = \mathcal{B}(C(I))$. Otherwise, $\sigma(\mathcal{O}(C(I)))$ is strictly larger than $\mathcal{B}(C(I))$.

Proof. The proof is similar to that of Proposition 1.2. Let us first show that $\mathcal{B}(C(I))$ is contained in $\sigma(\mathcal{O}(C(I)))$. Again, it suffices to show that all coordinate functions are measurable with respect to $\sigma(\mathcal{O}(C(I)))$ and this follows since the coordinate functions are continuous in the supremum metric.

Now assume that I is a compact interval. In this case the topology $\mathcal{O}(C(I))$ is second countable. This follows from the well-known fact that C(I) is a separable metric space in the supremum norm, by noting that we may take as a base of the topology the set of all open metric balls of rational radius around the countable dense set of functions. Thus to show that $\sigma(\mathcal{O}(C(I))) = \mathcal{B}(C(I))$ when I is compact it suffices to show that for every $f \in C(I)$ and every $0 < r < \infty$ the ball $B(f,r) := \{g \in C(I): d(f,g) < r\}$ is in $\mathcal{B}(C(I))$. This ball is the union of the closed balls $\overline{B}(f,r') := \{g \in C(I): d(f,g) \leq r'\}, r' < r (and this may be written as a countable union). Now$ $<math>\overline{B}(f,r')$ equals the set $\{g \in C(I): |g(x) - f(x)| \leq r' \text{ for all } x \in \mathbb{Q} \cap I\}$ which is in $\mathcal{B}(C(I))$ by Proposition 2.1.

Finally, suppose I is not a compact interval. For concreteness, say $I = [0, \infty)$ (other cases are analogous). We sketch a proof that $\sigma(\mathcal{O}(C(I)))$ is strictly larger than $\mathcal{B}(C(I))$ by a cardinality argument. It is known that the cardinality of \mathcal{B} (the Borel sigma algebra of \mathbb{R}) is that of the continuum (we will not prove this here). One may then deduce from Proposition 2.1 that the cardinality of $\mathcal{B}(C(I))$ is also that of the continuum. However, when I is not compact, the cardinality of $\sigma(\mathcal{O}(C(I)))$ is larger than that of the continuum. Indeed, this is the case already for $\mathcal{O}(C(I))$. To see this, in the case $I = [0, \infty)$, for each binary sequence $b \in \{0, 1\}^{\{0, 1, 2, ...\}}$ define a function $f_b \in C(I)$ as follows: on the interval [k, k+1], according to the bit b_k , the function f_b is either the zero function or a piecewise linear function equalling 0 at k and k + 1 and equalling 1 at $k + \frac{1}{2}$. Thus the set of such functions (f_b) forms a set of continuum cardinality in C(I)with the property that the supremum distance of every two functions in the set is 1. Consider the open balls $B_b := B(f_b, 1/2)$. Then these are a continuum of disjoint open sets. Since an arbitrary union of them is in $\mathcal{O}(C(I))$ we deduce that $\mathcal{O}(C(I))$ has cardinality larger than the continuum.

We proceed to the question of which sigma algebra is more useful. Here the answer is clearcut, the sigma algebra $\mathcal{B}(C(I))$ is more useful and is the only one we will use in our study of Brownian motion. In particular, we consider Brownian motion as a random function in $C[0,\infty)$ with respect to the sigma algebra $\mathcal{B}(C([0,\infty)))$. We mention three additional characterizations of $\mathcal{B}(C(I))$:

(i) $\mathcal{B}(C(I))$ is the sigma algebra generated by the topology of uniform convergence on compact sub-intervals of I. That is, the minimal sigma algebra making every open set in this topology measurable.

- (ii) $\mathcal{B}(C(I))$ is the minimal sigma algebra containing all $\mathcal{B}(C(J))$, where J is a compact subinterval of I. Here we identify a set A in C(J) with the set $\{f \in C(I) : (f(x))_{x \in J} \in A\}$.
- (iii) For any countable dense set $Q \subseteq I$, B(C(I)) may be written as the collection of sets of the form $\{f \in C(I) : (f(x))_{x \in Q} \in A\}$ where $A \in \mathcal{B}^Q$. In particular, $\mathcal{B}(C(I))$ is separable, that is, there is a countable collection of sets such that $\mathcal{B}(C(I))$ is the minimal sigma algebra containing this collection. In fact, $\mathcal{B}(C(I))$ is a so-called *standard Borel space*.

3. Uniqueness of measures

Let (Ω, \mathcal{F}) be a measurable space. The question arises from time to time, given two measures on (Ω, \mathcal{F}) , how to show that they are equal? For instance, we have defined Brownian motion as the measure on $(C([0, \infty)), \mathcal{B}(C([0, \infty))))$ supported on functions f with f(0) = 0 and having stationary independent increments with the increment from t to s distributed N(0, t - s). Do these properties uniquely define the measure? To tackle these questions define a π -system to be a collection \mathcal{P} of subsets of Ω which is closed under finite intersections. That is, $A \cap B \in \mathcal{P}$ whenever $A, B \in \mathcal{P}$. The following result is quite useful.

Proposition 3.1. Let (Ω, \mathcal{F}) be a measurable space such that $\mathcal{F} = \sigma(\mathcal{P})$ for some π -system \mathcal{P} . If two probability measures on (Ω, \mathcal{F}) coincide on \mathcal{P} then they are equal.

This is a consequence of Dynkin's $\pi - \lambda$ theorem which we state next. A collection \mathcal{L} of subsets of Ω is called a λ -system if (i) $\Omega \in \mathcal{L}$, (ii) $B \setminus A \in \mathcal{L}$ whenever $A, B \in \mathcal{L}$ and $A \subseteq B$ and (iii) $A_n \in \mathcal{L}$ and A_n increases to A implies that $A \in \mathcal{L}$.

Theorem 3.2. (Dynkin's $\pi - \lambda$ theorem) If \mathcal{P} is a π -system and \mathcal{L} is a λ -system containing \mathcal{P} then $\sigma(\mathcal{P}) \subseteq \mathcal{L}$.

The $\pi - \lambda$ theorem (which we do not prove here) directly implies Proposition 3.1 as follows. Suppose $\mathbb{P}_1, \mathbb{P}_2$ are two probability measures on (Ω, \mathcal{F}) which coincide on the given π -system \mathcal{P} . Define $\mathcal{L} \subseteq \mathcal{F}$ to be the collection of sets in \mathcal{F} on which \mathbb{P}_1 and \mathbb{P}_2 coincide. It is not difficult to check that \mathcal{L} is a λ -system, whence $\mathcal{L} = \mathcal{F}$ by the $\pi - \lambda$ theorem since $\mathcal{P} \subseteq \mathcal{L}$ and $\mathcal{F} = \sigma(P)$.

In the case of Brownian motion we conclude that the properties in its definition uniquely determine the Brownian motion measure on $(C([0,\infty)), \mathcal{B}(C([0,\infty))))$. Indeed, the sigma algebra $\mathcal{B}(C([0,\infty)))$ is generated by the π -system of measurable cylinder sets (the restriction to $C([0,\infty))$ of the sets in (2)) and the distribution on these measurable cylinder sets is given by the specified finite-dimensional distributions.