
NOTES ON SIGMA ALGEBRAS FOR BROWNIAN MOTION COURSE

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

These notes provide some basic facts regarding sigma algebras which arise in our Brownian
motion course. We focus on sigma algebras for spaces of real-valued functions. For a deeper
discussion see, for instance,
http://www.encyclopediaofmath.org/index.php/Measurable_space

and the related articles and books referenced there.

1. Sigma algebras on function spaces

The space R comes with its standard topology which we denote byO (that is, O is the collection
of open sets in R). It comes also with its Borel sigma algebra which we denote by B. The Borel
sigma algebra is the smallest one containing all open sets (i.e., the sigma algebra generated by
O).

Let I be an arbitrary non-empty set (finite, countable or uncountable). For x ∈ I, the coordi-
nate function Tx is the function Tx : RI → R defined by Tx(f) := f(x). The set RI is naturally
endowed with both a topology and a sigma algebra named, naturally, the product topology and
product sigma algebra. The product topology OI is the smallest topology making all the (Tx),
x ∈ I, continuous. The product sigma algebra BI is the smallest sigma algebra making all the
(Tx), x ∈ I, measurable (with respect to the Borel sigma algebra on R). Slightly more explicitly,
a base for the product topology is given by all open cylinder sets which are the sets of the form∏

x∈I
Ux where Ux ∈ O and all but finitely many of the Ux equal R. (1)

Similarly, the product sigma algebra is the smallest sigma algebra containing all measurable
cylinder sets which are sets of the form∏

x∈I
Ax where Ax ∈ B and all but finitely many of the Ax equal R. (2)

The product sigma algebra may also be called the sigma algebra of finite-dimensional distributions
as the cylinder sets (2) exactly correspond to the distributions of finitely many coordinates. A
set in the product sigma algebra places restrictions on at most countably many coordinates of I,
as the following claim shows.

Proposition 1.1. Let us identify a set A′ ∈ RI′, where I ′ ⊆ I, with the set A ∈ RI given by
{f ∈ RI : (fx)x∈I′ ∈ A′}. With this identification we have

BI is the union of all BI′ over all countable I ′ ⊆ I.

Proof. Let us denote by B̃I the union of all BI′ over all countable I ′ ⊆ I. The fact that B̃I is
contained in BI is an immediate consequence of the definitions. It is also simple to check that

B̃I is a sigma algebra. Finally, all coordinate functions (Tx), x ∈ I, are measurable with respect

to B̃I . Hence B̃I = BI by the definition of BI . �
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Since we are used to Borel sigma algebras, we may define an additional sigma algebra, σ(OI),
which is the smallest one making all sets in the product topology measurable. The question arises
whether the two sigma algebras σ(OI) and BI are equal, and if not, which one is more useful.
The answer depends on the cardinality of I.

Proposition 1.2. If I is finite or countable then σ(OI) = BI . If I is uncountable then BI is a
strict subset of σ(OI).

Proof. Let us first show that BI is contained in σ(OI). By the definition of BI it suffices to show
that all the coordinate functions (Tx), x ∈ I, are measurable with respect to σ(OI). Indeed, these
coordinate functions are continuous, by definition, with respect to OI and hence also measurable
with respect to σ(OI).

We now show that if I is finite or countable then σ(OI) is contained in BI . This hinges on the
notion of separability. Specifically, the fact that the topology OI is second countable for such I
(that is, OI has a base of countable cardinality). The countable base is obtained explicitly as all
sets of the form (1) where all the Ux which are not R are open intervals with rational endpoints.
The sets in the countable base are also of the form (2) and hence in BI . Since every set in OI is
the union of sets from the countable base (in particular, a countable union of such sets) we see
that OI is contained in BI , whence σ(OI) is contained in BI .

Finally, let us show that if I is uncountable then σ(OI) is strictly greater than BI . Indeed,
the set

A = {f ∈ RI : ∃x ∈ I, f(x) ∈ (−1, 1)}
of all functions having at least one coordinate in (−1, 1) is open, i.e., in OI (and hence in σ(OI))
since it is the (uncountable) union of the open cylinder sets (−1, 1) ×

∏
x∈I\{y}R over y ∈ I.

However, it follows from Proposition 1.1 that the set A is not in BI (since A does not belong to

any of the BI′ for I ′ ⊆ I countable). �

Regarding the usefulness question. For most applications the space RI with I uncountable is
itself not a useful space, being too large to work with. Thus, for such I, neither of the sigma
algebras, BI and σ(OI), is too useful.

2. Sigma algebras on spaces of continuous functions

Let us now consider the space C(I) of continuous functions f : I → R, where I is an arbitrary,
positive length, interval in R (possibly unbounded). The space C(I) comes with the supremum
metric, d(f, g) := supx∈I |f(x) − g(x)| and its associated topology O(C(I)). We again have the
coordinate functions (Tx), x ∈ I, given by Tx : C(I)→ R, Tx(f) := f(x). We may again consider
two sigma algebras, B(C(I)), the analog of the product sigma algebra, which is the minimal
sigma algebra making all coordinate functions measurable, and σ(O(C(I))), the sigma algebra
generated from the open sets in O(C(I)). Similarly to before, the sigma algebra B(C(I)) is
generated by the restriction to C(I) of the measurable cylinder sets (2). Thus it may be thought
of as the sigma algebra of finite-dimensional distributions on C(I). However, it now has a more
economic description.

Proposition 2.1. For any countable dense set Q ⊆ I the sigma algebra B(C(I)) is generated by
measurable cylinder sets which place restrictions only on the coordinates of Q. That is, by sets
of the form

C(I) ∩

∏
x∈Q

Ax

∏
x∈I\Q

R

 where Ax ∈ B for all x ∈ Q. (3)



NOTES ON SIGMA ALGEBRAS FOR BROWNIAN MOTION COURSE 3

Proof. Write ˜B(C(I)) for the sigma algebra generated by the sets of the form (3). It is simple to

see that ˜B(C(I)) ⊆ B(C(I)). To see the converse inclusion, it suffices to check that the coordinate

functions are measurable with respect to ˜B(C(I)). This follows since the function Tx, x ∈ I, is
the pointwise limit (using continuity of f ∈ C(I)) of the functions (Txn), xn ∈ Q, xn → x, which

are measurable with respect to ˜B(C(I)). �

Having two sigma algebras on C(I), namely B(C(I)) and σ(O(C(I))), we again ask whether
these two sigma algebras are equal, and if not, which is more useful. The answer now depends
on the topological properties of I.

Proposition 2.2. If I is a compact interval then σ(O(C(I))) = B(C(I)). Otherwise, σ(O(C(I)))
is strictly larger than B(C(I)).

Proof. The proof is similar to that of Proposition 1.2. Let us first show that B(C(I)) is contained
in σ(O(C(I))). Again, it suffices to show that all coordinate functions are measurable with respect
to σ(O(C(I))) and this follows since the coordinate functions are continuous in the supremum
metric.

Now assume that I is a compact interval. In this case the topologyO(C(I)) is second countable.
This follows from the well-known fact that C(I) is a separable metric space in the supremum norm,
by noting that we may take as a base of the topology the set of all open metric balls of rational
radius around the countable dense set of functions. Thus to show that σ(O(C(I))) = B(C(I))
when I is compact it suffices to show that for every f ∈ C(I) and every 0 < r < ∞ the ball
B(f, r) := {g ∈ C(I) : d(f, g) < r} is in B(C(I)). This ball is the union of the closed balls
B̄(f, r′) := {g ∈ C(I) : d(f, g) 6 r′}, r′ < r (and this may be written as a countable union). Now
B̄(f, r′) equals the set {g ∈ C(I) : |g(x) − f(x)| 6 r′ for all x ∈ Q ∩ I} which is in B(C(I)) by
Proposition 2.1.

Finally, suppose I is not a compact interval. For concreteness, say I = [0,∞) (other cases are
analogous). We sketch a proof that σ(O(C(I))) is strictly larger than B(C(I)) by a cardinality
argument. It is known that the cardinality of B (the Borel sigma algebra of R) is that of the
continuum (we will not prove this here). One may then deduce from Proposition 2.1 that the
cardinality of B(C(I)) is also that of the continuum. However, when I is not compact, the
cardinality of σ(O(C(I))) is larger than that of the continuum. Indeed, this is the case already

for O(C(I)). To see this, in the case I = [0,∞), for each binary sequence b ∈ {0, 1}{0,1,2,...} define
a function fb ∈ C(I) as follows: on the interval [k, k+ 1], according to the bit bk, the function fb
is either the zero function or a piecewise linear function equalling 0 at k and k+ 1 and equalling
1 at k + 1

2 . Thus the set of such functions (fb) forms a set of continuum cardinality in C(I)
with the property that the supremum distance of every two functions in the set is 1. Consider
the open balls Bb := B(fb, 1/2). Then these are a continuum of disjoint open sets. Since an
arbitrary union of them is in O(C(I)) we deduce that O(C(I)) has cardinality larger than the
continuum. �

We proceed to the question of which sigma algebra is more useful. Here the answer is clear-
cut, the sigma algebra B(C(I)) is more useful and is the only one we will use in our study of
Brownian motion. In particular, we consider Brownian motion as a random function in C[0,∞)
with respect to the sigma algebra B(C([0,∞))). We mention three additional characterizations
of B(C(I)):

(i) B(C(I)) is the sigma algebra generated by the topology of uniform convergence on compact
sub-intervals of I. That is, the minimal sigma algebra making every open set in this
topology measurable.
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(ii) B(C(I)) is the minimal sigma algebra containing all B(C(J)), where J is a compact sub-
interval of I. Here we identify a set A in C(J) with the set {f ∈ C(I) : (f(x))x∈J ∈ A}.

(iii) For any countable dense set Q ⊆ I, B(C(I)) may be written as the collection of sets of the
form {f ∈ C(I) : (f(x))x∈Q ∈ A} where A ∈ BQ. In particular, B(C(I)) is separable, that
is, there is a countable collection of sets such that B(C(I)) is the minimal sigma algebra
containing this collection. In fact, B(C(I)) is a so-called standard Borel space.

3. Uniqueness of measures

Let (Ω,F) be a measurable space. The question arises from time to time, given two measures
on (Ω,F), how to show that they are equal? For instance, we have defined Brownian motion as
the measure on (C([0,∞)),B(C([0,∞)))) supported on functions f with f(0) = 0 and having
stationary independent increments with the increment from t to s distributed N(0, t − s). Do
these properties uniquely define the measure? To tackle these questions define a π-system to
be a collection P of subsets of Ω which is closed under finite intersections. That is, A ∩ B ∈ P
whenever A,B ∈ P. The following result is quite useful.

Proposition 3.1. Let (Ω,F) be a measurable space such that F = σ(P) for some π-system P.
If two probability measures on (Ω,F) coincide on P then they are equal.

This is a consequence of Dynkin’s π−λ theorem which we state next. A collection L of subsets
of Ω is called a λ-system if (i) Ω ∈ L, (ii) B \ A ∈ L whenever A,B ∈ L and A ⊆ B and (iii)
An ∈ L and An increases to A implies that A ∈ L.

Theorem 3.2. (Dynkin’s π − λ theorem) If P is a π-system and L is a λ-system containing P
then σ(P) ⊆ L.

The π − λ theorem (which we do not prove here) directly implies Proposition 3.1 as follows.
Suppose P1,P2 are two probability measures on (Ω,F) which coincide on the given π-system P.
Define L ⊆ F to be the collection of sets in F on which P1 and P2 coincide. It is not difficult to
check that L is a λ-system, whence L = F by the π − λ theorem since P ⊆ L and F = σ(P ).

In the case of Brownian motion we conclude that the properties in its definition uniquely
determine the Brownian motion measure on (C([0,∞)),B(C([0,∞)))). Indeed, the sigma algebra
B(C([0,∞))) is generated by the π-system of measurable cylinder sets (the restriction to C([0,∞))
of the sets in (2)) and the distribution on these measurable cylinder sets is given by the specified
finite-dimensional distributions.


