BROWNIAN MOTION HOMEWORK ASSIGNMENT 10

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

(i) Solve exercise 7.1 from the Brownian motion book (you may use Lemma 1.41 as needed. See the beginning of Section 1.4 for the definition of the Dirichlet space $D[0,1]$).

(ii) Solve exercise 7.2 from the Brownian motion book.

(iii) Let $(\mathcal{F}(t))$, $t \geq 0$, be a complete filtration (i.e., $\mathcal{F}(t)$ contains all sets of measure 0 for each t). A local martingale $(M(t))$, $t \geq 0$, is an adapted (to $(\mathcal{F}(t))$) stochastic process for which there exists a sequence (T_n) of stopping times satisfying

(a) (T_n) are almost surely increasing to infinity: $\mathbb{P}(T_n \leq T_{n+1}) = 1$ and $\mathbb{P}(T_n \to \infty) = 1$.
(b) For each n, $(M(t \wedge T_n))$, $t \geq 0$, is a martingale.

In the next class we will see examples of local martingales which are not martingales. This exercise explores some basic properties of local martingales.

Let $(M(t))$, $t \geq 0$, be a continuous local martingale. That is, a local martingale whose sample paths are almost surely continuous.

(a) Prove that if $\mathbb{E}|M(0)| < \infty$ and M is bounded from below in the sense that there exists some $C < \infty$ for which $\mathbb{P}(M(t) \geq -C) = 1$ for all t then M is a supermartingale.

Remark: in particular, if M is bounded both from below and from above then M is a martingale.

(b) Suppose there exists a sequence (a_n) such that for any n,

$$\mathbb{P}\left(\sup_{0 \leq s < \infty} |M(s \wedge T_n)| \leq a_n\right) = 1. \quad (1)$$

Prove that for any fixed $t \geq 0$, the sequence $(M(t \wedge T_n))$ (indexed by n) is a discrete time martingale.

(c) Suppose that, in addition to (1),

$$\sup_n \mathbb{E}(M(t \wedge T_n)^2) < \infty \quad \text{for all } t. \quad (2)$$

Prove that M is a martingale.