PERCOLATION: HOMEWORK ASSIGNMENT 6

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

This homework assignment needs to be submitted in class on April 30.

(1) Consider percolation on \mathbb{Z}^d with 0 . Let <math>C(x) be the connected component of the vertex x, and let D(x) be the diameter of this component (that is, $D(x) = \max_{y,z \in C(x)} d(y,z)$, where d(y,z) is the graph distance between y and z). Prove that there exist constants $0 < C, c < \infty$ (depending only on p and d) such that for all $n \ge 2$,

$$c \log n \leq \mathbb{E}_p \left[\max_{x \in [-n,n]^d} D(x) \right] \leq C \log n.$$

(2) Consider percolation on \mathbb{Z}^d and let $e_1 := (1, 0, \dots, 0) \in \mathbb{Z}^d$. Define L(p), the *correlation length* of the percolation with parameter p, by

$$\frac{1}{L(p)} := -\lim_{n \to \infty} \frac{1}{n} \log(\mathbb{P}_p(0 \leftrightarrow ne_1)).$$

That is, $\mathbb{P}_p(0 \leftrightarrow ne_1)$ is approximately $\exp(-n/L(p))$ on a logarithmic scale. One observes the exponential decay only on scales larger than L(p), which is the origin of the name correlation length.

- (a) Prove that L(p) is well-defined as an element of $(0, \infty]$ for all $p \in (0, 1]$, and that $\mathbb{P}_p(0 \leftrightarrow ne_1) \leq \exp(-n/L(p))$ for all n and p. Hint: Recall the subadditive limit theorem from homework 2, exercise 4.
- (b) Prove that L(p) is non-decreasing on (0,1], that $L(p) = \infty$ for $p \ge p_c$ and that $L(p) < \infty$ for 0 .
- (c) Prove that $L(p) \to 0$ as $p \downarrow 0$.
- (d) For the next three parts, fix $p \in (0,1]$. Denote $\Lambda_n := [-n,n]^d$ and $\partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$. Prove that

$$\mathbb{P}_p(0 \leftrightarrow x)^2 \leqslant \mathbb{P}_p(0 \leftrightarrow 2ne_1) \quad \text{for every } x \in \partial \Lambda_n.$$

Deduce that for all n,

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \leqslant |\partial \Lambda_n| \exp(-n/L(p)). \tag{1}$$

(e) Prove that

$$\frac{1}{L(p)} = -\lim_{n \to \infty} \frac{1}{n} \log(\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n))$$

(f) Prove that for all $n, m \ge 1$,

 $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_{n+m}) \leqslant |\partial \Lambda_n| \mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \mathbb{P}_p(0 \leftrightarrow \partial \Lambda_m).$

Deduce that for some constants $0 < c, \alpha < \infty$ (depending only on d) and all $n \ge 1$,

$$\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \ge c n^{-\alpha} \exp(-n/L(p)). \tag{2}$$

Hint: The subadditive limit theorem may need to be used cleverly.

- (g) Prove that 1/L(p) is continuous on (0, 1].
 - Hint: It may help to use (1) and (2).

Date: April 25, 2013.