PERCOLATION: HOMEWORK ASSIGNMENT 7

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

This homework assignment needs to be submitted in class on May 21.

The first two exercises discuss questions from class, see there for more details.

- (1) A labeled skeleton with k leaves is a tree all of whose vertices have degree 1 or 3, having exactly k vertices of degree 1, and with the vertices of degree 1 labeled by $\{1, \ldots, k\}$. Suppose that x_1, \ldots, x_k are vertices in a connected graph G. Prove that there exists a labeled skeleton with k leaves S and a mapping $\psi: V(S) \to V(G)$ (not necessarily one-to-one) such that
 - (a) ψ maps the vertex with label *i* to x_i .
 - (b) For any adjacent $u, v \in S$ there exists a path $P_{u,v}$ in G between $\psi(u)$ and $\psi(v)$ such that all these paths are edge-disjoint.
- (2) Let G be an infinite graph. A trifurcation point is a vertex of G lying in an infinite connected component, having exactly 3 incident edges, and such that deleting the vertex and its incident edges splits the connected component of the vertex into exactly 3 infinite components. Let $S \subseteq V(G)$ be a finite set and define $\partial^{o}S$, the outer boundary of S, as the set of vertices in $V(G) \setminus S$ which are adjacent to a vertex in S. Prove that the number of trifurcation points in S is at most $|\partial^{o}S| 2$.
- (3) Consider bond percolation on \mathbb{Z}^d with $p > p_c$. Prove that

$$\inf_{x,y\in\mathbb{Z}^d}\mathbb{P}_p(x\leftrightarrow y)>0.$$

(4) Consider bond percolation on \mathbb{Z}^d and recall that $\theta(p) := \mathbb{P}_p(0 \leftrightarrow \infty)$. Prove that $\theta(p)$ is left-continuous on $(p_c, 1]$.

Hint: Recall the standard coupling of bond percolation for all p. To each edge e assign a random variable U(e) uniform on [0, 1], independently between the edges, and declare e to be open at parameter p if U(e) < p.

Remark: We proved in class the right continuity of θ on [0, 1]. Together with this exercise we obtain that θ is continuous on $(p_c, 1]$.

(5) (a) Let A_1, \ldots, A_n be increasing events for bond percolation on a graph, all having the same probability. Prove that

$$\mathbb{P}(A_1) \ge 1 - (1 - \mathbb{P}(A_1 \cup \dots \cup A_n))^{1/n}.$$

Remark: This is sometimes called the square-root trick. It shows that for increasing events of equal probability, if their union has probability close to 1 then each event has probability close to 1. This is not true for general events.

(b) For the next two parts, consider bond percolation on \mathbb{Z}^d with $p > p_c$. For an integer $n \ge 1$, let F_1^n, \ldots, F_{2d}^n be the faces of the box $[-n, n]^d$ (these are subsets of $[-n, n]^d \setminus [-n + 1, n - 1]^d$). Prove that for every $\varepsilon > 0$ there exists an integer $m \ge 0$ such that for any n > m and any $1 \le i \le 2d$,

$$\mathbb{P}_p([-m,m]^d \leftrightarrow F_i \text{ in } [-n,n]^d) \ge 1-\varepsilon.$$

Date: May 4, 2013.

The above event is the event that there exists an open path, fully con-

tained in [-n, n]^d, connecting a vertex in [-m, m]^d with a vertex of F_i.
(c) Write Fⁿ_L and Fⁿ_R for the left and right faces of [-n, n]^d, respectively (the faces with x coordinate -n and n, respectively). Prove that

 $\mathbb{P}_p(F_L^n\leftrightarrow F_R^n \ \text{in} \ [-n,n]^d)\to 1 \quad \text{as} \ n\to\infty.$

The above event is the event of left-right crossing of $[-n, n]^d$, that there exists an open path, fully contained in $[-n, n]^d$, connecting a vertex of F_L^n with a vertex of F_R^n .