PERCOLATION: HOMEWORK ASSIGNMENT 9

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

This homework assignment needs to be submitted in class on June 11.

(1) Consider bond percolation on \mathbb{Z}^d and assume $p > p_c$. Let A be an infinite subset of vertices of \mathbb{Z}^d . Prove that

 \mathbb{P}_{p} (the intersection of A with the infinite component is infinite) = 1.

Hint: The Kolmogorov 0-1 law.

(2) Let G be a graph with maximal degree Δ and v a vertex of G. Show that there exists some C, depending only on the maximal degree Δ , such that for every $L \ge 1$,

 $|\{A : A \text{ is a connected set in } G, |A| = L \text{ and } v \in A\}| \leq C^L.$

Remark: $C = \frac{\Delta^{\Delta}}{(\Delta - 1)^{\Delta - 1}} \leqslant e\Delta$ suffices (for $\Delta \ge 2$).

(3) Consider bond percolation on \mathbb{Z}^d . Prove that for every $d \ge 2$ there exists some p(d) < 1, with $p(2) = p_c(\mathbb{Z}^2)$, such that for every p > p(d) and every $x, y \in \mathbb{Z}^d$, there exists a constant C = C(d, p) satisfying

 $\mathbb{E}_p(d_{\text{open graph}}(x, y) \cdot 1_{(x, y \text{ in infinite component})}) \leq C \cdot d_{\mathbb{Z}^d}(x, y),$

where d_G is the graph distance in G and by 'open graph' we mean the subgraph of \mathbb{Z}^d of open edges.

(4) Consider a site percolation on \mathbb{Z}^d , written as $(Y_x)_{x \in \mathbb{Z}^d}$ with $Y_x \in \{0, 1\}$, which has possibly different probabilities per site and which is possibly not independent. For $k \ge 1$, we say that (Y_x) is *k*-dependent if for every two sets $A, B \subseteq \mathbb{Z}^d$ such that

$$\min_{\substack{x \in A \\ y \in B}} d_{\mathbb{Z}^d}(x, y) > k$$

we have that $(Y_x)_{x \in A}$ and $(Y_x)_{x \in B}$ are independent. Prove that there exist some p, C, c > 0, depending only on k and d, such that for every k-dependent site percolation satisfying $\mathbb{P}(Y_x = 1) < p$ for every $x \in \mathbb{Z}^d$ we have

 $\mathbb{P}(\text{the origin is connected to } \partial [-n, n]^d \text{ by a path with } Y_x = 1) \leq C \exp(-cn).$

Date: July 10, 2013.