Exercise 1

Instructor: Ron Peled, Tel Aviv University

April 1, 2011

The exercise needs to be handed in by May 2'nd in class.

In all of the following, unless otherwise indicated, we assume $(S_n)_{n=0}^{\infty}$ is a random walk in \mathbb{R}^d with $S_n := \sum_{i=0}^n X_i$ (the walk may or may not be on \mathbb{Z}^d).

- 1. Prove the second Wald identity (directly, without use of martingale theory)
- 2. Biased 1D RWs: The following exercise discusses the 1D random walk with $\mathbb{P}(X_1 = 1) = 1 \mathbb{P}(X_1 = -1) = p$ for $p \neq \frac{1}{2}$. Let $T := \min \{n \mid S_n \in \{0, M\}\}$ be the hitting time of 0 or M.
 - (a) Calculate $\mathbb{P}^x(S_T = 0)$ for 0 < x < M and use it to find \mathbb{P}^x (no return to 0) for x > 0. Compare the result with the Kesten-Spitzer-Whitman theorem.
 - (b) Calculate $\mathbb{E}^x T$ for 0 < x < M.
- 3. Do Exercises 5 and 12 from the notes of Steve Lalley: http://galton.uchicago.edu/~lalley/Courses/312/RW.pdf.
- 4. Prove that the minimum of two stopping times is also a stopping time. That is, if T and S are stopping times with respect to a filtration $\{\mathcal{F}_n\}_{n\geq 0}$ then min(T, S) is also such a stopping time.
- 5. Suppose X_1 is uniform on the interval (0,1) and let $T := \min \{n \mid S_n > 1\}$. Show that $\mathbb{P}(T > n) = 1/n!$, so $\mathbb{E}T = e$ and $\mathbb{E}S_T = e/2$.
- 6. Prove that each of the following conditions is sufficient to deduce that $\liminf_{n\to\infty} S_n = -\infty$ and $\limsup_{n\to\infty} S_n = \infty$.
 - (a) X_1 has a symmetric distribution and $(\mathbb{P}(X_1 = 0) < 1)$.
 - (b) $\mathbb{E}(X_1) = 0$ and $0 < \mathbb{E}(X_1^2) < \infty$ (prove this without using the Chung-Fuchs theorem).
- 7. Let $P := \{x \mid \exists n \mathbb{P}(S_n = x) > 0\}$ be the set of possible values for S_n . Prove that if S_n is point-recurrent then $\mathbb{P}(\forall x \in P, S_n = x \text{ infinitely often}) = 1$ (note that the walk is not necessarily on \mathbb{Z}^d).

- 8. Prove that if $\mathbb{P}(|S_n| < 1 \text{ infinitely often}) = 1$ then for every $\varepsilon > 0$, $\mathbb{P}(|S_n| < \varepsilon \text{ infinitely often}) = 1$. This justifies defining neighbourhood-recurrence using one particular value of ε .
- 9. Let $P := \{x \mid \forall \varepsilon > 0 \exists n \mathbb{P}(|S_n x| < \varepsilon) > 0\}$ be the set of neighbourhood possible values for S_n . Prove that if S_n is neighbourhood-recurrent then P is a group under addition in \mathbb{R}^d .
- 10. Give an example of a point-recurrent 1D RW whose set of possible values $P := \{x \mid \exists n \mathbb{P}(S_n = x) > 0\}$ is dense in \mathbb{R} .
- 11. Give an example of a 1D RW which is neighbourhood-recurrent but not point-recurrent.
- 12. Prove that if S_n is recurrent on \mathbb{Z}^d then so is its symmetrized version \tilde{S}_n , the walk whose increments are distributed as $X_1 X'_1$ where X_1, X'_1 are independent copies of X_1 . Hint: Use the Fourier-analytic criterion for recurrence and compare S_{2n} with \tilde{S}_n .

Remark: The same result is true also for RW in \mathbb{R}^d and neighbourhood-recurrence.

- 13. Prove that if S_n is a RW on \mathbb{Z} satisfying the weak law of large numbers, i.e., for every $\varepsilon > 0$, $\mathbb{P}(\frac{S_n}{n} > \varepsilon) \to 0$ as $n \to \infty$, then S_n is recurrent. Hint: Similar to the 2D recurrence theorem.
- 14. Let p be the transition kernel of an irreducible Markov chain on a countable state space S. That is, for every $x \in S$, $\sum_{y \in S} p(x, y) = 1$ (p(x, y) is the probability to go from x to y in one step) and for every $x, y \in S$, $\exists n$ such that the probability to go from x to y in n steps is non-zero. A function $h: S \to \mathbb{R}$ is called superharmonic with respect to the Markov chain if $h(x) \geq \sum_{y \in S} p(x, y)h(y)$. Show that the Markov chain is recurrent (that is, every $x \in S$ is recurrent) if and only if all non-negative superharmonic functions with respect to the Markov chain are constants.
- 15. (* Optional exercise) Construct arbitrary heavy tail recurrent 1D distributions. More precisely, show that for any $\varepsilon(x) \downarrow 0$ as $x \to \infty$ there exists a recurrent 1D RW on \mathbb{Z} such that $\mathbb{P}(|X_1| \ge x) \ge \varepsilon(x)$ for all large x.