
Exercise 1

Instructor: Ron Peled, Tel Aviv University

April 1, 2011

The exercise needs to be handed in by May 2'nd in class.
In all of the following, unless otherwise indicated, we assume (Sn)

∞
n=0 is a

random walk in Rd with Sn :=
∑n

i=0 Xi (the walk may or may not be on Zd).

1. Prove the secondWald identity (directly, without use of martingale theory)

2. Biased 1D RWs: The following exercise discusses the 1D random walk with
P(X1 = 1) = 1−P(X1 = −1) = p for p 6= 1

2 . Let T := min {n | Sn ∈ {0,M}}
be the hitting time of 0 or M .

(a) Calculate Px(ST = 0) for 0 < x < M and use it to �nd Px (no return to 0)
for x > 0. Compare the result with the Kesten-Spitzer-Whitman the-
orem.

(b) Calculate ExT for 0 < x < M .

3. Do Exercises 5 and 12 from the notes of Steve Lalley:
http://galton.uchicago.edu/~lalley/Courses/312/RW.pdf.

4. Prove that the minimum of two stopping times is also a stopping time.
That is, if T and S are stopping times with respect to a �ltration {Fn} n≥0
then min(T, S) is also such a stopping time.

5. Suppose X1 is uniform on the interval (0,1) and let T := min {n | Sn > 1}.
Show that P(T > n) = 1/n!, so ET = e and EST = e/2.

6. Prove that each of the following conditions is su�cent to deduce that
lim infn→∞ Sn = −∞ and lim supn→∞ Sn =∞.

(a) X1 has a symmetric distribution and (P(X1 = 0) < 1.

(b) E(X1) = 0 and 0 < E(X2
1 ) <∞ (prove this without using the Chung-

Fuchs theorem).

7. Let P := {x | ∃n P(Sn = x) > 0} be the set of possible values for Sn.
Prove that if Sn is point-recurrent then P(∀x ∈ P, Sn = x in�nitely often)=1
(note that the walk is not necessarily on Zd).
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8. Prove that if P(|Sn| < 1 in�nitely often) = 1 then for every ε > 0, P(|Sn| <
ε in�nitely often) = 1. This justi�es de�ning neighbourhood-recurrence
using one particular value of ε.

9. Let P := {x | ∀ε > 0 ∃n P(|Sn − x| < ε) > 0} be the set of neighbourhood
possible values for Sn. Prove that if Sn is neighbourhood-recurrent then
P is a group under addition in Rd.

10. Give an example of a point-recurrent 1D RW whose set of possible values
P := {x | ∃n P(Sn = x) > 0} is dense in R.

11. Give an example of a 1D RW which is neighbourhood-recurrent but not
point-recurrent.

12. Prove that if Sn is recurrent on Zd then so is its symmetrized version S̃n,
the walk whose increments are distributed as X1 −X ′1 where X1, X

′
1 are

independent copies of X1.
Hint: Use the Fourier-analytic criterion for recurrence and compare S2n

with S̃n.
Remark: The same result is true also for RW in Rd and neighbourhood-
recurrence.

13. Prove that if Sn is a RW on Z satisfying the weak law of large numbers,
i.e., for every ε > 0, P(Sn

n > ε)→ 0 as n→∞, then Sn is recurrent.
Hint: Similar to the 2D recurrence theorem.

14. Let p be the transition kernel of an irreducible Markov chain on a countable
state space S. That is, for every x ∈ S,

∑
y∈S p(x, y) = 1 (p(x, y) is the

probability to go from x to y in one step) and for every x, y ∈ S, ∃n such
that the probability to go from x to y in n steps is non-zero. A function
h : S → R is called superharmonic with respect to the Markov chain if
h(x) ≥

∑
y∈S p(x, y)h(y). Show that the Markov chain is recurrent (that

is, every x ∈S is recurrent) if and only if all non-negative superharmonic
functions with respect to the Markov chain are constants.

15. (* Optional exercise) Construct arbitrary heavy tail recurrent 1D distri-
butions. More precisely, show that for any ε(x) ↓ 0 as x→∞ there exists
a recurrent 1D RW on Z such that P(|X1| ≥ x) ≥ ε(x) for all large x.
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