Exercise 1

Instructor: Ron Peled, Tel Aviv University

April 1, 2011

The exercise needs to be handed in by May 2’nd in class.

In all of the following, unless otherwise indicated, we assume \((S_n)_{n=0}^{\infty}\) is a random walk in \(\mathbb{R}^d\) with \(S_n := \sum_{i=0}^{n} X_i\) (the walk may or may not be on \(Z^d\)).

1. Prove the second Wald identity (directly, without use of martingale theory)

2. Biased 1D RWs: The following exercise discusses the 1D random walk with
\[P(X_1 = 1) = 1 - P(X_1 = -1) = p \text{ for } p \neq \frac{1}{2}. \]
Let \(T := \min \{ n \mid S_n \in \{0, M\} \}\) be the hitting time of 0 or \(M\).

(a) Calculate \(P_x(S_T = 0)\) for \(0 < x < M\) and use it to find \(P_x(\text{no return to 0})\) for \(x > 0\). Compare the result with the Kesten-Spitzer-Whitman theorem.

(b) Calculate \(E_x T\) for \(0 < x < M\).

3. Do Exercises 5 and 12 from the notes of Steve Lalley:
http://galton.uchicago.edu/~lalley/Courses/312/RW.pdf.

4. Prove that the minimum of two stopping times is also a stopping time. That is, if \(T\) and \(S\) are stopping times with respect to a filtration \(\mathcal{F}_n\) \(n \geq 0\) then \(\min(T, S)\) is also such a stopping time.

5. Suppose \(X_1\) is uniform on the interval (0,1) and let \(T := \min \{ n \mid S_n > 1 \}\).
Show that \(P(T > n) = 1/n!\), so \(E T = e\) and \(E S_T = e/2\).

6. Prove that each of the following conditions is sufficient to deduce that \(\lim \inf_{n \to \infty} S_n = -\infty\) and \(\lim \sup_{n \to \infty} S_n = \infty\).

(a) \(X_1\) has a symmetric distribution and \(P(X_1 = 0) < 1\).
(b) \(E(X_1) = 0\) and \(0 < E(X_1^2) < \infty\) (prove this without using the Chung-Fuchs theorem).

7. Let \(P := \{ x \mid \exists n \ P(S_n = x) > 0 \}\) be the set of possible values for \(S_n\). Prove that if \(S_n\) is point-recurrent then \(P(\forall x \in P, S_n = x \text{ infinitely often}) = 1\) (note that the walk is not necessarily on \(Z^d\)).
8. Prove that if $P(|S_n| < 1 \text{ infinitely often}) = 1$ then for every $\varepsilon > 0$, $P(|S_n| < \varepsilon \text{ infinitely often}) = 1$. This justifies defining neighbourhood-recurrence using one particular value of ε.

9. Let $P := \{x \mid \forall \varepsilon > 0 \exists n \ P(|S_n - x| < \varepsilon) > 0\}$ be the set of neighbourhood possible values for S_n. Prove that if S_n is neighbourhood-recurrent then P is a group under addition in \mathbb{R}^d.

10. Give an example of a point-recurrent 1D RW whose set of possible values $P := \{x \mid \exists n \ P(S_n = x) > 0\}$ is dense in \mathbb{R}.

11. Give an example of a 1D RW which is neighbourhood-recurrent but not point-recurrent.

12. Prove that if S_n is recurrent on \mathbb{Z}^d then so is its symmetrized version \tilde{S}_n, the walk whose increments are distributed as $X_1 - X'_1$ where X_1, X'_1 are independent copies of X_1.
 Hint: Use the Fourier-analytic criterion for recurrence and compare S_{2n} with \tilde{S}_n.
 Remark: The same result is true also for RW in \mathbb{R}^d and neighbourhood-recurrence.

13. Prove that if S_n is a RW on \mathbb{Z} satisfying the weak law of large numbers, i.e., for every $\varepsilon > 0$, $P(S_n > \varepsilon) \to 0$ as $n \to \infty$, then S_n is recurrent.
 Hint: Similar to the 2D recurrence theorem.

14. Let p be the transition kernel of an irreducible Markov chain on a countable state space S. That is, for every $x \in S$, $\sum_{y \in S} p(x, y) = 1$ ($p(x, y)$ is the probability to go from x to y in one step) and for every $x, y \in S$, $\exists n$ such that the probability to go from x to y in n steps is non-zero. A function $h : S \to \mathbb{R}$ is called superharmonic with respect to the Markov chain if $h(x) \geq \sum_{y \in S} p(x, y) h(y)$. Show that the Markov chain is recurrent (that is, every $x \in S$ is recurrent) if and only if all non-negative superharmonic functions with respect to the Markov chain are constants.

15. (* Optional exercise) Construct arbitrary heavy tail recurrent 1D distributions. More precisely, show that for any $\varepsilon(x) \downarrow 0$ as $x \to \infty$ there exists a recurrent 1D RW on \mathbb{Z} such that $P(|X_1| \geq x) \geq \varepsilon(x)$ for all large x.

2