Random Walks and Brownian Motion Instructor: Ron Peled
Tel Aviv University Spring 2011

Lecture 10
Lecture date: May 13, 2011 Scribe: Assa Naveh

In this lesson we talk about Hdélder continuity of BM and about its differntiability. We then
go on to scaling and time-inversion invariance of BM, and we explore a few examples of their
applications. Finaly, we introduce Markov property of BM and Blumenthal’s 0-1 law.

Tags for today’s lecture: Holder, scaling invariance, time inversion, Markov, Blumenthal
0-1.

1 Previously, on RW and BM

A Brownian Motion starting at € R is a random continuous function on [0, c0) such that:

1. B(0) =z as.

2. Independent increments: Vn,V0 = g < t; < t2 < ... < t, the random variables
{B(t;) — B(ti—1)}}_, are independent.

3. VO<t,0<h B(t+h)— B(t)~N(0,h)
Last time we discussed the modulus of continuum of BM:

1. 3C > 0 s.t. a.s. for every sufficiently small A and every 0 < ¢t < 1 — h we have
|B(t+ h) — B(t)| < Cw/hlog(%)

2. Ve<V2as. Ve>030 < h<eand 3t € [0,1—h]s.t. |B(t+h)—B(t)| > cy/hlog(})

2 Holder Continuity

Defenition: A function f : [0,00} — R is called locally a-Hélder continuous at z if there
exist € > 0 and ¢ > 0 s.t. |f(z) — f(y)| < c|lz — y|* for every ys.t. |z —y| <e. ais
called the Holder exponent.

Corollary: Va < % a.s. BM is locally a-Hélder continuous at every x € [0, 00)
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Proof: The previous results imply this for B[0,1]. Now, B[1,2] is a new BM run up to time
1 started at B(1). Hence this also holds for B[k, k + 1] for any of the countably many
k’s. (The right endpoints also satisfy the Holder estimate for y < x, because B[0,1)
has the same distribution as the BM run backwards: {B(1—¢)—B(1)|0<t<1} )R

Property 2 above shows that a.s. there is ¢t € [0,1] where the BM is not 3-HC. We will
not show this, but a.s. for any o > % BM is nowhere a-HC. There do exist random points,
called slow times, where the BM is %—HC, but they are very rare.

Notice that differentiability imply 1-HC. Next we show the weaker claim that the BM is not
differentiable.

Theorem (Paley, Wiener, Zygmund, 1993): a.s. BM is nowhere differentiable.

Moreover, for every t, either D*B(t) = oo or D,B(t) = oo or both, where

D*f(t) = lim sup—f(t +h) — f)

hl0

>

D.f(t) = hr]xll&]nf

ft+h) = F(t)
h

Proof: It suffices to prove this for ¢ € [0, 1].

Assume that there exists tg € [0, 1] with
—o00 < DyB(t) < D*B(t) < o0

In other words,
B(to+ h) — B(t
limsup‘ (fo + 1) (0)|<oo
hl0 h

Hence, for some (random) M, by the continuity of BM,

sup |B(to + h) — B(to)| <M %
helo,1] h

We need to show that for any M € N, the probability that there exists a t( satisfying % is
0.

k—1
n

Fix an M € N and also 4 < n € N. Suppose there exists a tg € |
Then, for every 1 < j < n — 1 we have:

,%]forsomel§k<n.

k+j

n

kti) _ pk=l+iy

n n

B( = B( ) — Blto) |+
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Now, define Q5 = {|B(:) = B(:IH)| < M2E j = 1,2, 3}

27+1
ML
n

)=][PUBO)I <M

n 3
Hence, P(UQy k) < n (M> — 0.
k=1

n
But if there exists ¢y € [0, 1] satisfying s then for every n > 4, (JQ, 1, holds. Hence no such
k=1
tpexists with prob. 1. H

3 Distributional prob. of the BM Process

3.1 Scaling Invariance (or Brownian scaling)

Note: Standard BM<« z =0

Theorem: If Bis a SBM and a > 0, then the process {X (¢)[t > 0} given by X (t) = 2 B(a?t)
is a SBM.

Proof: It is straighforward that X is a.s. a continuous function, and X has the correct
finite dimension distribution.l

Application: For a,b > 0let T'(a,b) = min{t| B(t) € {—a,b}}
Letting X (t) = 1 B(a?t) we have:

ET(a,b) = a*Emin {t >0 X(t) e {1, 2}} = d’ET(1, 2)
and furthermore, ET(a,a) = a’ET(1,1).

Similarly, P(B(T'(a,b)) = b) is a function of 2 ( = P(X(T(1,2)) = 2).

3.2 Time Inversion Invariance

Theorem: If B is a SBM then the process {X(T) |t > 0} given by

xo={7¢ 173
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is a SBM.

Proof: It is straightforward that X(¢) is continuous on (0,00). for any
t1, oy tn (X(t1),...,X(tn)) is a Gaussian vector, and EX(t;) = 0, and one can
check that the covariance of BM is preserved cov(X(t;), X (t;)) = min(t;,t;) so the
finite dim. dist. are preserved. Hence it remains only to verify continuity at 0. Since
{X () }eo 4 {B(t)}teq then a.s. lim X(t) = 0. Since the rationals are dense and

tl0
teQ
X is continuous on [0, 00), we deduce hfélX( )=0a.s.l

Remark: The Ornstein-Uhlenbeck process: {Y (t)|t € R} is defined by Y (t) = e~'B(e*)
using a SBM B. This process is a stationary Markov process (and is the limit of a
RW with drift towards the origin proportional to its location). The time inversion is

equivalent to saying that Y is a reversible process {Y(¢) |t € R} g {Y(-t)|t € R}.

3.3 Applications to basic properties of BM
B(t)
t

1) Law of Large Numbers:lim =0 as.
t—0

Proof: Define X (t) as the time inversion of B, and note lim 20 — =limX(}) =0a.s. W
t—0 ! t—0 t

2) a.s. limsup \(/) = 00, litrninf% = —00
—00

t—o00

Proof: It is sufficient to prove this as ¢t — oo along the integers. Note {hm sup \(/) = oo}

t—o00

o0
N {hm sup 2 > M} Fix M, we will show that P(B(n) > M+/n i.0.) = 1. Notic-

M=1 n—oo
ing {B(n)|n > 0} is a RW with N (0, 1) increments, we deduce from the Hewitt-Savage
0-1 law that P(B(n) > M+/n i.0.) € {0,1}.

For any sequence of events A,, we have P(A, occursi.o.) > limsupP(A4,) by a form of
n—oo

Fatou’s lemma, or by writing:

{4, occursi.o.} = ﬂ UA’“* ﬂB

n=1lk=n

o
where B,is a decreasing sequence ofevents, so P( () By,) = lim P(B,,) by monotone conver-
n=1

gence. But P(B,,) > limsup P(Ag).
Hence, we deduce the result from noting limsup P(B(n) > My/n) = P(B(1) > M) > 0N
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3) as. lirzlfoup% = oo,lirf?iionf% = —00

Proof: Same as 2), by time inversion.

4) Letting 7 =inf {¢t > 0| B(t) > 0} and o = inf {¢ > 0| B(¢) < 0}then P(r =0) = P(c =
0) = 1. (Follows from 3)

5) a.s BM has no interval of monotonicity.

Proof: If BM has an interval of monotonicity then it also has one with rational endpoints.
Fix ¢1,¢2 € Qa < q1 < g2 < b. We will show P([g1,¢2]isanint.of mon.) = 0.
Dividing [q1, ¢2] into n distinct subintervals, by the independent increments property
P(increments on each subinterval have same sign) =2-27" — 0 W

4 Markov Property and Blumenthal’s 0-1 Law

Defenition: A d-dimensional BM is a process of the form {(Bi(t), Ba(t), ..., B4(t)) |t > 0}
where the B; are independent 1D BM.

Defenition: Two continuous (sample path continuous) stochastic processes X,Y are called
independent if for every ti,...,tn, s1, ..., S, € R we have that (X (¢1),..., X(¢,)) is inde-
pendent of (Y (s1), ..., Y (sn)).

Remark: Since the processes have continuous paths, if follows that any event measurable
with respect to X is independent of any event measurable with respect to Y. This
remains true if you have just right-continuity or continuity in probability.

Theorem (Markov property of BM)

If {B(t)|t > 0} is a BM, then for any s > 0 {B(t+ s) — B(s) |t > 0} is a SBM independent
of {B(t)|0<t<s}.

Proof: The independence follows from the independent increments property. Continuity
and finite dim. dist. are easily checked.
1) A Filtration {F(t)},>, is a sequence of o-algebra, satisfying F(t) C F(s)Vt < s.

2) A Filtered probability space (Q, F, P) and {F ()}, is a probability space with a filtra-
tion s.t. F(t) C F for all ¢ > 0.

3) A process X is called adapted to the filtration {F(¢)} of o({X ()]0 < s < t}) C F(t).

4) For BM, we let FO(t) = o({B(s) |0 < s < t}). We also define F*(t) = | FO(t + ¢).
e>0
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We have FO(t) C F*(t). Both are filtrations and B is adapted to both.
Theorem: (Markov property for 1)

If BisaBM and s > 0 then {B(t + s) — B(s) |t > 0} is a SBM independent of F*(s). That
is, any event in o({B(t + s) — B(s)}) is independent of any event in FT(s).

Proof: It suffices ti show that any event depending only on finitely many coordinates
{(B(t; + s) — B(s), ..., B(t,, + s) — B(s))}is independent of F*(s), by continuity of
B. Any event of this form is independent if F°(s + ¢) for small enough e. Hence,
independence of F*(s).l

Corollary: (Blumenthal’s 0-1 law)
The germ o-algebra F*(0) is trivial (all events have 0-1 probability) for a BM.

Proof: For a SBM, F(0) C o({B(t)}) but is independent of it by the previous theorem.
for any different starting point, the result follows since we can apply the transformation
B — B —z to B and F1(0) and get a SBM and its germ o-algebra. B

Application: (Triviality of the tail o-algebra)

The tail o-algebra 7 = (o({B(s)|s > t}). Then for a BM, 7 is trivial.
t>0

Proof: Time inversion maps F1(0) to 7. Hence the result follows, from the Blumenthal’s
0-1 law.

Remark: For any A € 7 P*(A) € {0,1} and is either 0 for all z or 1 for all x. But this is
not the case for F1(0).
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