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Lecture 12
Lecture date: May 23, 2011 Scribe: Naomi Feldheim

In this lecture we define continuous time martingales, and prove Wald’s identities concerning
Brownian motion. Later on we discuss Skorohod embedding, which is the problem of
sampling a certain random walk out of a sample of the Brownian motion. We define the
so-called Azéme-Yor embedding, and show it solves the problem. At last we discuss the
Donsker’s invariance principle, which roughly states that Brownian motion is the universal
scaling limit of any mean-zero finite-variance random walk.

Tags for today’s lecture: continuous time martingales, Wald identities on BROWN-
TAN MOTION, Skorohod embedding problem, Azéme-Yor embedding, Donsker’s invariance
principle.

1 Continuous Time Martingales
Definition 1 A real valued stochastic process {X (t)}+>0 adapted to a filteration {F(t)}+>0
is a martingale if:

o Vi, E|X(t)] < o0

o V0 <s<t, E(X(t)|F(s))=X(s)a.s.

A submartingale is defined similarly, but with E(X (¢)|F(s)) > X(s)a.s., and a supermartin-
gale has E(X (t)|F(s)) < X(s) a.s..

Definition 2 A martingale X is called continuous if almost surely, the function t — X (t)
18 continuous.

Examples:

1. 1D Brownian motion (1-dim. Brownian motion) is a martingale w.r.t. F*. Indeed,
Vt >0 E|B(t)| < oo, B is adapted to F', and V0 < s < ¢, we have

E(B(t)|F"(s)) = E(B(t) — B(s)|F"(s)) + B(s) = E(B(t) — B(s)) + B(s) = 0+ B(s)

The second equality holds by the Markov property w.r.t. FT. Furthermore, B is
continuous.
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2. If {p(t)|t > 0} is the counting function of a Poisson process, then p(t)—t is a martingale
w.rt. F(t) =o(p(s)|s <t).
Indeed, note that p(t) ~ Poisson(t), so Ep(t) —t = 0 = Ep(0). The other properties
are easily verified. This is not a continuous process.

3. Let B be a 1D Brownian motion, then {B(t) — t};>0 is a martingale w.r.t. FT.
Adapteness and integrability are clear. For 0 < s < :

B(t)* = (B(t) — B(s))* + B(s)* + 2B(t)(B(t) — B(s))
E[(B(t) — B(s))?*| F*(s)] =t — s (by Markov prop.)
E[B(t) — B(s)| F"(s)] =0 (again by Markov prop.)
= E[B(t)?| F*(s)] = B(s)? +t — s, as needed.

A fundamental tool in this subject is

Theorem 3 (continuous time optional stopping lemma - COSL). If {X (t)}+>0 is a cont.
martingale w.r.t. F, T is a stopping time w.r.t. F, and there exists an integrable random
variable Z s.t. | X(T At)| < Z (a.s.), then:

EX(T) = EX(0).

Remark 4 Proof uses discrete time result and approzimation.

There are many other results of similar sort, e.g., if S, T are stopping times, S < T, and
| X(t ANT) < Z for some integrable random variable Z, then E(X(T)|F*(S)) = X(95)
almost surely.

Proposition 5 (Wald’s lemma for Brownian motion). If B is a 1D Brownian motion and
T is a stopping time w.r.t. F* s.t. ET < oo, then:

1. EB(T) =
2. EB(T)? = ET.

Proof Plan: We shall use the COSL, first for the martingale B(t) and then for B(t)? —
The problem is to find an integrable majorant Z (first for B(T A t)).

[T]
Let My = sup |B(k+t)— B(k)|, and M = M.
t€[0,1] 1
Note |B(T At)| < M a.s. for all t. Hence if EM < oo, we are done for the first identity.
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EM = EZ ]1{T>k_1}Mk = ZE(Mkﬂ{T>k—1}) =%
k=1 k=1

Notice that M), depends only on B(t + k) — B(k) for t > 0, and the indicator Ty7-;_1y €
FT(k—1). So, by the Markov property we get:

EM =%=)Y EMP(T>k-1)=EMy Y P(T>k—1) =EME(T + 1).
k=1 k=1

Hence it is enough to show EMy < oco. This f ollows since we showed P(My > a) =
P(|B(1)| > a). This proves identity no. 1.

For no. 2, we first define the stopping times:
H, =min(t > 0: [b(t)| =n), T, =tAH,.

Notice that |B(t AT,)? — (t AT,)| < n?+ T, and E(n? + T) < oo, hence by the COST
EB(T,)? = ET,. By Fatou’s lemma (which says that if X,, converges a.s. to X, then
EX <liminf, . EX,), we get:

EB(T)? < liminf EB(T},)? = lim inf BT}, = ET,
n—oo n—oo
where the very last step is achieved by the monotone converging theorem.
For the other direction, we note:

EB(T)? = E(B(T) — B(Ty))* + EB(Ty) + 2EB(T)(B(T) — B(Ty))

the first term is clearly non-negative, while the last term we claim to be 0. This is due to
the strong Markov property and the first Wald identity for T' — T;,, which yield:

E(B(T) — B(T,,) | F*(T,)) = 0.
All together we have EB(T)? > EB(T},,)? for every n, thus
EB(T)? > lim EB(T},)* = lim ET, = ET.

n—oo n—oo

a

Corollary 6 (exit time from an interval.) For a 1D Brownian motion and a,b > 0, let
Top = min(t > 0| B(t) € {—a,b}).
Then:
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1. P(B(Tup) = —a) = 75, P(B(Toy) = b) = 3%

2. ET,p =a-0.
Proof Check that T, is integrable, and apply Wald’s lemma. O

Remark 7 The condition for the first Wald identity can be weakened to Ev/T < oo (we
will not show this). This result is in some sense sharp: Ty = min(t > 0| B(t) = 1) satisfies

1
ET? ‘< oo fore>0but EB(T)) =1+#0.

2 Skorohod Embedding Problem

Given a random variable X, is there an integrable stopping time T' s.t. B(T) ~ X7 If so,
we may embed a random walk with steps distributed like X into a Brownian motion, step
by step.

By Wald’s lemma, it is necessary that EX = 0, and EX? = ET < oco. It turns out to be

also a sufficient condition:

Theorem 8 If X satisfies EX = 0 and EX? < oo, then there exists an integrable stopping
time T (w.r.t. F*) s.t. B(T) ~ X.

Example 9 If X takes only two values —a and b, we can use T, .

There are two approaches to the proof: Dubins embedding (may be found in Durret [I] or
Morters and Peres [2]), and Azéma-Yor embedding, which we will present here.

Theorem 10 (Azéma-Yor (AY) embedding.) Let X satisfy the premises of Theorem [§,
and let

C(EX|X>2), P(X>1)>0
() = { 0, otherwise

for a 1D-Brownian motion B, let M be its mazimum process: M(t) = maxcpq B(s).
Define the stopping time
T =inf(t > 0| M(t) > V(B(t)))

Then T is integrable and B(T) ~ X.

intuition: W1 (x) = sup(b| ¥(b) < x). We are waiting for the process ¥~!(M(t)) to collide
with B(t).
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We will prove the theorem for random variables supported on finitely many points. The
general case follows by a limiting process. This specific case is covered by the following
lemma:

Lemma 11 Suppose X with EX = 0 takes values x1 < x9 < -+ < xn,. Define y1 < yo <
oo < Yp—1 by yi = Y(xiy1). Define stopping times recursively:

Then T,_1 satisfies BT, 1 = EX? and B(T),_1 ~ X.

Example 12 Suppose X ~ Unif{-2,—1,0,1,2}. We begin by waiting for the Brownian
motion to exit (x1,y1) = (—2,1/2). Suppose it exists from above. Now we wait till the
Brownian motion exists (z2,y2) = (—1,1). Suppose now it existed from below (i.e., B(Ty) =
—1). The next step (13) would be the exist time from (x3,y3) = (0,1.5), but since we are
already out of this interval, we set T3 = Ts. For a similar reason Ty = Tb, and our sampled
step is B(Ty) = —1.

Proof First note that y; > z;41 with equality if and only if i = n — 1. Also note that
ET,—1 < co. Hence we only need to show that B(7,_1) ~ X, and use Wald’s lemma.

]E(X ‘ X Z CCZ'_H), X Z Ti4+1
X otherwise.

{xl,yl}. For ¢ > 2 there are two cases:

o IfY;, | =x; for some j <7 —1, then Y; = ;.

e If Y, 1 =yi1, then E(Y; |Yic1 =) = yi1 and Y] € {x;,y:}.

Write Y; = } Note that Y7 satisfies EY; = 0 and Y7 €

Finally, note that Y,,—; = X. It follows that
(B(Th), B(Ts),... B(T,—1) ~ (Y1,Ya,... Y5 1)

(i.e., those tuples have the same joint-distribution), since a random variable supported
on two values is determined by its expectation. (we have checked that B(Ty) ~ Y,
B(TQ)’B(Tl) ~ YQ‘Yl, etc.) O

Lemma 13 The stopping time T,,_1 we constructed above equals the stopping time T of the
AY embedding (in Theorem [10).

Proof Let j be such that
B(Tn_l) = Z;

(the sample in the previous lemma). Note

V(B(Th-1)) = yj—1

12-5



by definition of y;—1. If j <n—1,thenTj_; < Tj =Tj11 = --- = Tp—1, and B(Tj—1) = y;—1.
If j =n then B(T),—1) = 2 = Yn—1. In both cases B(Tj_1) = yj—1, hence

M(Th-1) > yj—1 = ¥(B(Th-1))-
This means 7' < T,,_; since T is the first time to pass V(B(-)).
Conversely, if ;1 <t < T; for some i < j then B(t) € (x;,y;), and so

M(t) <y < U(B) =T > Tp_,.

3 The Donsker’s Invariance Principle

Let { X, }n>0 be a sequence of i.i.d. random variables with finite variance. WLOG, EX; = 0
and varX; = 1. Let S,, = Y1 ; X;. We also let S(t) be its linear interpolation:

S(t) =Sy + = [t)(S1t)+1 — Sg))-

Note S € C[0, 00). Define S*(t) = % for t € [0,1].

Theorem 14 (Donsker) Sy converges in distribution to Bl 1) where B is a 1D Brownian
motion, in the space C|0,1] (with the sup.-norm).

Remark 15 See Portmanteau Theorem for convergence in distribution in Polish spaces.
Here we mean that for any bounded continuous function g : C[0,1] — R, it holds that
limy, 00 Eg(S) = Eg(Bljo,1))-

This is equivalent to: for every bounded measure p s.t. P(u is discontinuous at By 1) = 0,
it holds that limy, .o Ep(S;;) = Eu(Bljo1)-

This is also equiv. to: for any closed set K C C[0,1], limsup,,_,., P(S;, € K) <P(B|j €

Donsker’s Theorem follows from

Proposition 16 Let B be a 1D Brownian motion and X a random variable with EX = 0,
EX? < co. Then there exists a sequence 0 = Ty < T} < Ty < ... of stopping times for B
w.r.t. Ft st :

1. {B(Ty)}n>0 is a random walk with increments distributed like X .
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2. Letting S}, be constructed from this walk as before, then:
B(nt)
LD

lim P ( sup

n—oo 0<t<1

—S,’;(t)‘ > 6) =0, Ve > 0.

The last item roughly means convergence in probability, which is stronger then convergence
in distribution.

Proof Let T be the sopping time given by the Skorohod embedding theorem. Define the
Brownian motion Bi(t) := B(t+1T1)— B(T1). Let T} be the stopping time of the embedding
theorem for By; Ty := Ty + T35. Similarly define B (the Brownian motion from time 73),
and T4 (the stopping time of it according to emb. thm), and T3 := Ty + T4. This gives the
T; of the theorem, where property (1) is clear.

Let W, (t) = B\(;%t), which is BM by scale invariance. Define the event
A, = {3t €10,1] s.t. |S;(t) — Wy (t)| > €}
Need to show: Ve, lim, . P(A,) =0.

Let k = k(t) be such that % <t< % Since S} is piecewise linear:

A, C {3t €[0,1] st [Sky(t) — Wa(t)] > e} U {3t € [0,1] s.t. [Sgy—1(t) — Wa(t)] > €} =
{Elt €10.1] st. W, (i’“) — W) > e} U {Elt €10.1] st W, (T’;Ll) — W) > e}

The equality is true since Sy = B(T) = W, <ﬁ> Vn.

n

Claim For a given § € (0,1), the last event is contained in the following one:
{3t,s €1]0,2] s.t. |s —t] <6, |Wn(s)— Wy(t)] > e} U

T, Thio—
{Elte[o,l] s.t. k(“—t‘v‘k“)l—t‘zé}
n n

=1 Ul
We do not have time to prove the claim (but it should not be difficult).

Roughly, the claim says that the "bad” event A,, is contained in one of two cases: either
values of the BM W,, fluctuated more than € in a small interval (I1), or the stopping times
T; are far apart (I2).

e For every n, P(I1) — 0 as § | 0, by equicontinuity of W,,.
e Need: for fixed §, P(l3) — 0 as n — oo. For this it is enough to show that % — 1 as.,
which is the law of large numbers (LLN) for the variables {7;}. O
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Applications:
- Analyzing the maximum of a random walk is similar to analyzing the maximum of BM.

- Deriving of arcsine laws and iterated logarithm law for BM.
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