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In this lecture we define continuous time martingales, and prove Wald’s identities concerning
Brownian motion. Later on we discuss Skorohod embedding, which is the problem of
sampling a certain random walk out of a sample of the Brownian motion. We define the
so-called Azéme-Yor embedding, and show it solves the problem. At last we discuss the
Donsker’s invariance principle, which roughly states that Brownian motion is the universal
scaling limit of any mean-zero finite-variance random walk.

Tags for today’s lecture: continuous time martingales, Wald identities on BROWN-
IAN MOTION, Skorohod embedding problem, Azéme-Yor embedding, Donsker’s invariance
principle.

1 Continuous Time Martingales

Definition 1 A real valued stochastic process {X(t)}t≥0 adapted to a filteration {F(t)}t≥0

is a martingale if:

• ∀t, E|X(t)| <∞
• ∀0 < s ≤ t, E(X(t)|F(s)) = X(s) a.s.

A submartingale is defined similarly, but with E(X(t)|F(s)) ≥ X(s)a.s., and a supermartin-
gale has E(X(t)|F(s)) ≤ X(s) a.s..

Definition 2 A martingale X is called continuous if almost surely, the function t 7→ X(t)
is continuous.

Examples:

1. 1D Brownian motion (1-dim. Brownian motion) is a martingale w.r.t. F+. Indeed,
∀t ≥ 0 E|B(t)| <∞, B is adapted to F+, and ∀0 ≤ s ≤ t, we have

E(B(t)|F+(s)) = E(B(t)−B(s)|F+(s)) +B(s) = E(B(t)−B(s)) +B(s) = 0 +B(s)

The second equality holds by the Markov property w.r.t. F+. Furthermore, B is
continuous.
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2. If {p(t)|t ≥ 0} is the counting function of a Poisson process, then p(t)−t is a martingale
w.r.t. F(t) = σ(p(s)|s ≤ t).
Indeed, note that p(t) ∼ Poisson(t), so Ep(t) − t = 0 = Ep(0). The other properties
are easily verified. This is not a continuous process.

3. Let B be a 1D Brownian motion, then {B(t) − t}t≥0 is a martingale w.r.t. F+.
Adapteness and integrability are clear. For 0 ≤ s ≤ t:

B(t)2 = (B(t)−B(s))2 +B(s)2 + 2B(t)(B(t)−B(s))

E[(B(t)−B(s))2| F+(s)] = t− s (by Markov prop.)
E[B(t)−B(s)| F+(s)] = 0 (again by Markov prop.)

⇒ E[B(t)2 | F+(s)] = B(s)2 + t− s, as needed.

A fundamental tool in this subject is

Theorem 3 (continuous time optional stopping lemma - COSL). If {X(t)}t≥0 is a cont.
martingale w.r.t. F , T is a stopping time w.r.t. F , and there exists an integrable random
variable Z s.t. |X(T ∧ t)| ≤ Z (a.s.), then:

EX(T ) = EX(0).

Remark 4 Proof uses discrete time result and approximation.

There are many other results of similar sort, e.g., if S, T are stopping times, S ≤ T , and
|X(t ∧ T )| ≤ Z for some integrable random variable Z, then E(X(T ) | F+(S)) = X(S)
almost surely.

Proposition 5 (Wald’s lemma for Brownian motion). If B is a 1D Brownian motion and
T is a stopping time w.r.t. F+ s.t. ET ≤ ∞, then:

1. EB(T ) = 0.

2. EB(T )2 = ET .

Proof Plan: We shall use the COSL, first for the martingale B(t) and then for B(t)2 − t.
The problem is to find an integrable majorant Z (first for B(T ∧ t)).

Let Mk = sup
t∈[0,1]

|B(k + t)−B(k)|, and M =
dT e∑
k=1

Mk.

Note |B(T ∧ t)| ≤M a.s. for all t. Hence if EM <∞, we are done for the first identity.
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EM = E
∞∑
k=1

1l{T>k−1}Mk =
∞∑
k=1

E(Mk1l{T>k−1}) = ?

Notice that Mk depends only on B(t + k) − B(k) for t ≥ 0, and the indicator 1l{T>k−1} ∈
F+(k − 1). So, by the Markov property we get:

EM = ? =
∞∑
k=1

EMk P(T > k − 1) = EM0

∞∑
k=1

P(T > k − 1) = EM0 E(T + 1).

Hence it is enough to show EM0 < ∞. This f ollows since we showed P(M0 > a) =
P(|B(1)| > a). This proves identity no. 1.

For no. 2, we first define the stopping times:

Hn = min(t ≥ 0 : |b(t)| = n), Tn = t ∧Hn.

Notice that |B(t ∧ Tn)2 − (t ∧ Tn)| ≤ n2 + T , and E(n2 + T ) < ∞, hence by the COST
EB(Tn)2 = ETn. By Fatou’s lemma (which says that if Xn converges a.s. to X, then
EX ≤ lim infn→∞ EXn), we get:

EB(T )2 ≤ lim inf
n→∞

EB(Tn)2 = lim inf
n→∞

ETn = ET,

where the very last step is achieved by the monotone converging theorem.

For the other direction, we note:

EB(T )2 = E(B(T )−B(Tn))2 + EB(Tn) + 2EB(Tn)(B(T )−B(Tn))

the first term is clearly non-negative, while the last term we claim to be 0. This is due to
the strong Markov property and the first Wald identity for T − Tn, which yield:

E(B(T )−B(Tn) | F+(Tn)) = 0.

All together we have EB(T )2 ≥ EB(Tn)2 for every n, thus

EB(T )2 ≥ lim
n→∞

EB(Tn)2 = lim
n→∞

ETn = ET.

2

Corollary 6 (exit time from an interval.) For a 1D Brownian motion and a, b > 0, let

Ta,b = min(t ≥ 0 |B(t) ∈ {−a, b}).

Then:
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1. P(B(Ta,b) = −a) = b
a+b , P(B(Ta,b) = b) = a

a+b .

2. ETa,b = a · b.

Proof Check that Ta,b is integrable, and apply Wald’s lemma. 2

Remark 7 The condition for the first Wald identity can be weakened to E
√
T < ∞ (we

will not show this). This result is in some sense sharp: T1 = min(t ≥ 0 |B(t) = 1) satisfies

ET
1
2
−ε

1 <∞ for ε > 0 but EB(T1) = 1 6= 0.

2 Skorohod Embedding Problem

Given a random variable X, is there an integrable stopping time T s.t. B(T ) ∼ X? If so,
we may embed a random walk with steps distributed like X into a Brownian motion, step
by step.

By Wald’s lemma, it is necessary that EX = 0, and EX2 = ET < ∞. It turns out to be
also a sufficient condition:

Theorem 8 If X satisfies EX = 0 and EX2 <∞, then there exists an integrable stopping
time T (w.r.t. F+) s.t. B(T ) ∼ X.

Example 9 If X takes only two values −a and b, we can use Ta,b.

There are two approaches to the proof: Dubins embedding (may be found in Durret [1] or
Mörters and Peres [2]), and Azéma-Yor embedding, which we will present here.

Theorem 10 (Azéma-Yor (AY) embedding.) Let X satisfy the premises of Theorem 8,
and let

Ψ(x) =
{

E(X |X ≥ x), P(X ≥ x) > 0
0, otherwise

}
for a 1D-Brownian motion B, let M be its maximum process: M(t) = maxs∈[0,t]B(s).
Define the stopping time

T = inf(t ≥ 0 |M(t) ≥ Ψ(B(t)) )

Then T is integrable and B(T ) ∼ X.

intuition: Ψ−1(x) = sup(b |Ψ(b) ≤ x). We are waiting for the process Ψ−1(M(t)) to collide
with B(t).
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We will prove the theorem for random variables supported on finitely many points. The
general case follows by a limiting process. This specific case is covered by the following
lemma:

Lemma 11 Suppose X with EX = 0 takes values x1 < x2 < · · · < xn. Define y1 < y2 <
· · · < yn−1 by yi = Ψ(xi+1). Define stopping times recursively:

T0 = 0, Ti = inf(t ≥ Ti−1 |B(t) 6∈ (xi, yi) )

Then Tn−1 satisfies ETn−1 = EX2 and B(Tn−1 ∼ X.

Example 12 Suppose X ∼ Unif{−2,−1, 0, 1, 2}. We begin by waiting for the Brownian
motion to exit (x1, y1) = (−2, 1/2). Suppose it exists from above. Now we wait till the
Brownian motion exists (x2, y2) = (−1, 1). Suppose now it existed from below (i.e., B(T2) =
−1). The next step (T3) would be the exist time from (x3, y3) = (0, 1.5), but since we are
already out of this interval, we set T3 = T2. For a similar reason T4 = T2, and our sampled
step is B(T4) = −1.

Proof First note that yi ≥ xi+1 with equality if and only if i = n − 1. Also note that
ETn−1 <∞. Hence we only need to show that B(Tn−1) ∼ X, and use Wald’s lemma.

Write Yi =
{

E(X |X ≥ xi+1), X ≥ xi+1

X otherwise.

}
Note that Y1 satisfies EY1 = 0 and Y1 ∈

{x1, y1}. For i > 2 there are two cases:
• If Yi−1 = xj for some j ≤ i− 1, then Yi = xj .
• If Yi−1 = yi−1, then E(Yi |Yi−1 = yi) = yi−1 and Yi ∈ {xi, yi}.

Finally, note that Yn−1 = X. It follows that

(B(T1), B(T2), . . . B(Tn−1) ∼ (Y1, Y2, . . . Yn−1)

(i.e., those tuples have the same joint-distribution), since a random variable supported
on two values is determined by its expectation. (we have checked that B(T1) ∼ Y1,
B(T2)|B(T1) ∼ Y2|Y1, etc.) 2

Lemma 13 The stopping time Tn−1 we constructed above equals the stopping time T of the
AY embedding (in Theorem 10).

Proof Let j be such that
B(Tn−1) = xj

(the sample in the previous lemma). Note

Ψ(B(Tn−1)) = yj−1
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by definition of yj−1. If j ≤ n−1, then Tj−1 < Tj = Tj+1 = · · · = Tn−1, and B(Tj−1) = yj−1.
If j = n then B(Tn−1) = xn = yn−1. In both cases B(Tj−1) = yj−1, hence

M(Tn−1) ≥ yj−1 = Ψ(B(Tn−1)).

This means T ≤ Tn−1 since T is the first time to pass Ψ(B(·)).

Conversely, if Ti−1 ≤ t < Ti for some i ≤ j then B(t) ∈ (xi, yi), and so

M(t) < yi ≤ Ψ(B(t))⇒ T ≥ Tn−1.

2

3 The Donsker’s Invariance Principle

Let {Xn}n≥0 be a sequence of i.i.d. random variables with finite variance. WLOG, EX1 = 0
and varX1 = 1. Let Sn =

∑n
i=1Xi. We also let S(t) be its linear interpolation:

S(t) = Sbtc + (t− btc)(Sbtc+1 − Sbtc).

Note S ∈ C[0,∞). Define S∗n(t) = S(nt)√
n

for t ∈ [0, 1].

Theorem 14 (Donsker) S∗n converges in distribution to B|[0,1] where B is a 1D Brownian
motion, in the space C[0, 1] (with the sup.-norm).

Remark 15 See Portmanteau Theorem for convergence in distribution in Polish spaces.
Here we mean that for any bounded continuous function g : C[0, 1] → R, it holds that
limn→∞ Eg(S∗n) = Eg(B|[0,1]).

This is equivalent to: for every bounded measure µ s.t. P(µ is discontinuous at B|[0,1]) = 0,
it holds that limn→∞ Eµ(S∗n) = Eµ(B|[0,1]).

This is also equiv. to: for any closed set K ⊂ C[0, 1], lim supn→∞P(S∗n ∈ K) ≤ P(B|[0,1] ∈
K).

Donsker’s Theorem follows from

Proposition 16 Let B be a 1D Brownian motion and X a random variable with EX = 0,
EX2 < ∞. Then there exists a sequence 0 = T0 ≤ T1 ≤ T2 ≤ . . . of stopping times for B
w.r.t. F+ s.t. :

1. {B(Tn)}n≥0 is a random walk with increments distributed like X.
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2. Letting S∗n be constructed from this walk as before, then:

lim
n→∞

P
(

sup
0≤t≤1

∣∣∣∣B(nt)√
n
− S∗n(t)

∣∣∣∣ > ε

)
= 0, ∀ε > 0.

The last item roughly means convergence in probability, which is stronger then convergence
in distribution.

Proof Let T1 be the sopping time given by the Skorohod embedding theorem. Define the
Brownian motion B1(t) := B(t+T1)−B(T1). Let T ′2 be the stopping time of the embedding
theorem for B1; T2 := T1 + T ′2. Similarly define B2 (the Brownian motion from time T2),
and T ′3 (the stopping time of it according to emb. thm), and T3 := T2 + T ′3. This gives the
Ti of the theorem, where property (1) is clear.

Let Wn(t) = B(nt)√
n

, which is BM by scale invariance. Define the event

An = {∃t ∈ [0, 1] s.t. |S∗n(t)−Wn(t)| > ε}.

Need to show: ∀ε, limn→∞P(An) = 0.

Let k = k(t) be such that k−1
n ≤ t <

k
n . Since S∗n is piecewise linear:

An ⊂
{
∃t ∈ [0, 1] s.t. |Sk(t)(t)−Wn(t)| > ε

}
∪
{
∃t ∈ [0, 1] s.t. |Sk(t)−1(t)−Wn(t)| > ε

}
={

∃t ∈ [0, 1] s.t. |Wn

(
Tk
n

)
−Wn(t)| > ε

}
∪
{
∃t ∈ [0, 1] s.t. |Wn

(
Tk−1

n

)
−Wn(t)| > ε

}
The equality is true since Sk = B(Tk) = Wn

(
Tk
n

)√
n.

Claim For a given δ ∈ (0, 1), the last event is contained in the following one:

{∃t, s ∈ [0, 2] s.t. |s− t| < δ, |Wn(s)−Wn(t)| > ε}∪{
∃t ∈ [0, 1] s.t.

∣∣∣∣Tk(t)n
− t
∣∣∣∣ ∨ ∣∣∣∣Tk(t)−1

n
− t
∣∣∣∣ ≥ δ}

:= I1 ∪ I2

We do not have time to prove the claim (but it should not be difficult).

Roughly, the claim says that the ”bad” event An is contained in one of two cases: either
values of the BM Wn fluctuated more than ε in a small interval (I1), or the stopping times
Ti are far apart (I2).

• For every n, P(I1)→ 0 as δ ↓ 0, by equicontinuity of Wn.
• Need: for fixed δ, P(I2) → 0 as n → ∞. For this it is enough to show that Tn

n → 1 a.s.,
which is the law of large numbers (LLN) for the variables {Ti}. 2

12-7



Applications:
- Analyzing the maximum of a random walk is similar to analyzing the maximum of BM.
- Deriving of arcsine laws and iterated logarithm law for BM.
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