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In today's lecture we return to the Chung-Fuchs theorem regarding recurrence of general
random walks on Rd, and provide a proof for the Zd case. We then move on to present
a brief review of Martingales, mentioning several of their properties. In particular, we
relate to the optional sampling theorem, Doob's maximal inequality and the martingale
convergence theorem. Towards the end we begin to discuss Harmonic functions on graphs,
de�ne a Liouville graph, and �nish with concluding that Z2 is Liouville, using the martingale
convergence theorem.

Tags for today's lecture: Recurrence criteria for general RWs, Chung-Fuchs theorem,
Martingales, Harmonic functions, Liouville graph.

1 Chung-Fuchs Theorem

Theorem (Chung-Fuchs). Let Sn be a RW on Rd.

1. Suppose d = 1: If the weak law of large numbers holds in the form Sn/n → 0 in
probability, then Sn is neighborhood-recurrent.

2. Suppose d = 2: If the central limit theorem holds in the form Sn/
√
n ⇒ normal

distribution, then Sn is neighborhood-recurrent.

3. Suppose d = 3: If Sn is not contained in a plane (meaning that the group of possible
values for Sn does not rest on a plane) then Sn is neighborhood-transient.

proof.

(i) The d = 1 case has been proved in the previous lecture (under �rst moment assumptions
and for RWs on Z).

(ii) d = 2: We will prove the theorem for RWs on Z2.

We need to show
∞∑
n=0

P(Sn = 0) =∞ (according to proposition (3) in last week's lecture).
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We have, from the assumption,

P(
‖Sn‖√
n
≤ b) −→

n→∞

ˆ

‖x‖≤b

n(y)dy

(‖·‖ refers to the Euclidean norm on Rd, and n(y) is the limiting normal distribution.
Notice that we can assume n(y) is non-degenerate, otherwise we're back to the 1-dimension
problem).

Remark. A local limit theorem would give P(Sn = 0) ∼ c
n , which would yield the wanted

divergence of the sum
∞∑
n=0

P(Sn = 0).

Lemma. Let

G(x, y) = Ex[# of visits to y] =

∞∑
n=0

Px(Sn = y),

then
G(x, y) = Px(visit y) ·G(y, y) .

Notice that G(y, y) = G(x, x).

Proof. De�ne T = min(n | Sn = y) or T =∞ if y not visited.

Now,

G(x, y) =

∞∑
n=0

Px(Sn = y) =

∞∑
n=0

∞∑
k=0

Px(Sn = y, T = k)

(notice that Px(Sn = y, T = k) = 0 ∀k > n). Every element in the sum is positive, so we
can change the order of summing:

G(x, y) =
∞∑
k=0

∞∑
n=0

Px(Sn = y, T = k) .

Using the strong Markov property we get

G(x, y) =

∞∑
k=0

∞∑
n=0

Py(Sn = y) · P x(T = k) =

∞∑
k=0

Px(T = k) ·G(y, y) = Px(visit y) ·G(y, y) .

Corollary. Since Px(visit y) ≤ 1 it follows that

G(x, y) ≤ G(x, x) ,
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hence for any A ⊆ Zd
∞∑
n=0

Px(Sn ∈ A) ≤ |A| ·G(x, x)

(by summing upon all y ∈ A).

Back to the proof of (2): Note that for every m

(?)

∞∑
n=0

P(Sn = 0) = G(0, 0) ≥ c

m2

∞∑
n=0

P(‖Sn‖ ≤ m)

for some c > 0, from the corollary (here A = {x | ‖x‖ ≤ m} and |A| = c′ ·m2).
We can change the sum into an integral

(??)
1

m2

∞∑
n=0

P(‖Sn‖ ≤ m) =

∞̂

0

P(
∥∥Sbθm2c

∥∥ ≤ m)dθ,

because when n
m2 ≤ θ≤ n+1

m2 then
⌊
θm2

⌋
= n and each segment of the integral is of length

1
m2 . From the assumption

P(
∥∥Sbθm2c

∥∥ ≤ m) = P(

∥∥Sbθm2c
∥∥

√
θm

≤ 1√
θ

) −→
m→∞

ˆ

‖x‖≤θ−1/2

n(y)dy ,

and by Fatou's lemma,

liminf
m→∞

∞̂

0

P(
∥∥Sbθm2c

∥∥ ≤ m)dθ ≥
∞̂

0

liminf
m→∞

P(
∥∥Sbθm2c

∥∥ ≤ m)dθ =

∞̂

0

ˆ

‖x‖≤θ−1/2

n(y)dy .

Now, denote {‖x‖ ≤ θ−1/2} := Bθ. Notice that
´
Bθ

n(y)dy ∼ n(0) · |Bθ| as θ → ∞, and

n(0) · |Bθ| ≥ c
θ for some c > 0. Thus, using (??) from above,

liminf
m→∞

1

m2

∞∑
n=0

P(‖Sn‖ ≤ m) ≥
∞̂

C′

c

θ
=∞

for some c, C ′ > 0. Returning to (?) we get

∞∑
n=0

P(Sn = 0) =∞ . �

(iii) Proof outline for the 3-dimensional case of RWs on Z3.
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Reminder. A RW on Zd is recurrent i�

sup
r<1

ˆ

[−π,π]d

Re

[
1

1− r · ϕ(t)

]
dt =∞

where ϕ(t) = E[eit·X1 ] is the characteristic function of X1.

Remark. If z ∈ C, Re [z] ≤ 1 then Re
[

1
1−z

]
≤ 1

Re[1−z] . (exercise)

Thus,

sup
r<1

ˆ

[−π,π]d

Re

[
1

1− r · ϕ(t)

]
dt ≤ sup

r<1

ˆ

[−π,π]d

1

Re[1− r · ϕ(t)]
dt .

But ∀r < 1 : 1
Re[1−rϕ(t)] ≤

1
Re[1−ϕ(t)] , so the integral on the right hand side is ∞ only if

ˆ

[−π,π]d

1

Re[1− ϕ(t)]
dt =∞.

Accordingly, it is su�cient to show that
´

[−π,π]3

1
Re[1−ϕ(t)]dt <∞ in order to prove the tran-

sience of the walk.
Notice that if ϕ(t) = 1 + Θ(‖t‖2) as t → 0, then

´
[−π,π]3

1
Re[1−ϕ(t)] =

´
[−π,π]3

1
Θ(‖t‖2)

< ∞ as

t→ 0.
So, for the integral to be ∞ (and hence the RW be recurrent) we need ϕ(t) = 1 + o(‖t‖2) as
t→ 0.
But, for a 1-dimensional RV Y we have that (using the Taylor series)

E[eiλY ] = 1 + iµλ− a

2
λ2 + o(λ2) ,

where E[Y ] = µ, E[Y 2] = a. Hence, if ϕ(t) = E[eit·X1 ] = 1 + o(‖t‖2), then by writing t =
‖t‖ eiθ we get that eiθ·X1 is a 1-dimensional RV with both E[eiθ·X1] = 0 and V ar[eiθ·X1] = 0,
and therefore eiθ ·X1 ≡ 0 (a.s.).
Thus, in order to have

´
[−π,π]3

1
Re[1−ϕ(t)]dt =∞, we must have that eiθ ·X1 ≡ 0 for almost all

θ. Consequently, a RW on Z3 is recurrent only if it is contained in a plane, and otherwise
transient. �

2 Martingales

We now supply a quick review of martingales in discrete time. A more complete discussion
on the subject appears in [1].

5-4



2.1 De�nitions

A �ltration is a sequence of σ-�elds {Fn}n≥0 s.t. F0 ⊆ F1 ⊆ ...

A martingale (with respect to the �ltration {Fn}n≥0) is a sequence {Mn}n≥0 of integrable
RVs souch that Mn is measurable with respect to Fn, and

E[Mm | Fn] = Mn ∀m ≥ n .

Notice that the last requirement is trivially equivalent to

E[Mn+1 | Fn] = Mn ∀n .

Some intuition to this de�nition: We can think of Mn as the fortune earned by a gambler
at time n. The last requirement suggests that the game is fair - the expected fortune at any
time is the same as the gambler's initial fortune (or the fortune given at a certain time in
the past).

Submartingale is de�ned the same way, changing the last requirement into E[Mn+1 | Fn] ≥
Mn ∀n (a submartingale is a good game to play...).

Accordingly, supermartingale is de�ned with the last requirement E[Mn+1 | Fn] ≤ Mn ∀n
(�there's nothing super about a supermartingale�).

Remark. If no �ltration is given, then Fn = σ(M0, ...,Mn).

Example. A RW with mean 0 is a martingale (assuming X1 is integrable).

2.2 Optional Stopping

De�nition. T is a stopping time with respect to {Fn}n≥0 if T takes values in {0, 1, 2, ...}∪
{∞} and {T ≤ n} is measurable with respect to Fn.

Intuition: The gambler's decision to stop gambling is a function only of the results that
happened in the past.

Proposition. If Mn is a (super/sub)martingale and T a stopping time, then {MT∧n}n≥0

is also a (super/sub)martingale.

In particular, EMT∧n = EM0 ∀n (and unequal accordingly for a super/sub-martingale).

Proof. (exercise)

Example. Mn := Sn for a SRW {Sn}n≥0 on Z starting at 0, and T = min(n | Mn = 10)
(�rst hitting time of 10). Notice that EMn = EM0 = 0, P(T <∞) = 1 (by recurrence), and
EMT = 10, so EMT 6= EM0. However, EMT∧n = 0 by the above proposition.
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When is EMT = EM0?

Theorem (optional stopping theorem). let {Mn}n≥0 be a martingale, T a stopping
time, and suppose P(T <∞) = 1. Then EMT = EM0 if any of the following holds:

1. T is bounded (∃k P(T ≤ k) = 1).

2. (dominated convergence) ∃RV Y with E |Y | <∞ and |MT∧n| ≤ Y ∀n.

3. ET < ∞ and the di�erences |Mn −Mn−1| are uniformly bounded (|Mn −Mn−1| ≤
k ∀n a.s. for some k).

4. E |MT | <∞ and lim
n→∞

E[|Mn| · 1(T>n)] = 0.

5. {Mn} is uniformly integrable, i.e. ∀ε > 0 ∃kε s.t. E[|Mn| · 1(Mn≥kε)] ≤ ε ∀n.

6. ∃p > 1 s.t. {Mn} are bounded in Lp, that is ∃k E |Mn|p < k ∀n.

Proof.

1. By the assumption MT = MT∧k (a.s.), so EMT = EMT∧k = EM0.

2. MT∧n −→
n→∞

MT , thus (by dom. conv.) EMT = lim
n→∞

EMT∧k = EM0.

3. We have|MT∧n −M0| =

∣∣∣∣T∧n∑
k=1

(Mk −Mk−1)

∣∣∣∣ ≤ T · k where the right hand side is

integrable by assumption. Thus, by dominated convergence we obtain

E[MT −M0] = lim
n→∞

E[MT∧k −M0] = 0

.

4. Notice that MT = MT∧n + (MT −Mn) · 1(T>n), therefore

EMT = E[MT∧n] + E[MT · 1(T>n)]− E[Mn · 1(T>n)] .

Taking n→∞ and using the second part of the assumption we are left with EMT =
E0 + lim

n→∞
E[MT · 1(T>n)].

The assumption E |MT | < ∞ allows us to use the dominated convergence theorem
once again to conclude that lim

n→∞
E[MT · 1(T>n)] = 0 (here assuming P(T =∞) = 0 is

necessary) , and so EMT = E0.

5. We do not provide a proof for (5) and (6), but mention that once we prove (6), we can
obtain (5) easily. (Exercise).

Remark. for a supermartingale, all the above holds with the slight change that EMT ≤
EM0.
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2.3 Doob's Maximal Inequality

Theorem (Doob's maximal inequality). If {Mn}n≥0 is a non-negative submartingale,
then

P( max
0≤j≤n

Mj ≥ λ) ≤ EMn

λ
.

This theorem is often combined with the next proposition to get a stronger result:

Proposition (Jensen). If {Mn}n≥0 is a martingale, f : R→R convex, then {f(Mn)}n≥0

is a submartingale (assuming additionally that E |f(Mn)| <∞ ∀n).

In particular, we can take f(x) = |x|p for some p ≥ 1, or f(x) = ebx for some b ∈ R. Given
a martingale {Mn}, we can now use Doob's inequality for the non-negative submartingale
{f(Mn)}n≥0, and obtain:

P( max
0≤j≤n

Mj ≥ λ) ≤ E |Mn|p

λp
∀p ≥ 1

or

P( max
0≤j≤n

Mj ≥ λ) ≤ EebMn

ebλ
∀b ∈ R .

This way we can replace the original linear bound with a higher polynomial or exponential
bound.

Proofs for the above theorems can be found in[1].

2.4 Martingale Convergence Theorem

To start the (brief) discussion on the martingale convergence theorem, we present the next
quote from the book �Probability of Martingales� by D. Williams, on the signi�cance of this
theorem:

4 signi�es something important.
44 signi�es something very important.
444 is the martingale convergence theorem.

Theorem. Let {Mn}n≥0 be a supermartingale, and suppose sup
n

(M−n ) < ∞ (where M−n =

max(−Mn, 0)), then there exists a RV M such that Mn →M a.s.

E.g. a non-negative martingale always converges (a.s.)

Remark. The limit M is integrable, but the convergence is not necessarily in L1.
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For example, consider T = min(n | Sn = −10) where Sn is a SRW (T is the �rst crossing
time of -10). Then, the martingale ST∧n converges to the constant M = −10 which is
integrable, but the convergence is not in L1, since EST∧n = ES0 = 0 (using the fact that
ST∧n is a martingale), hence E[ST∧n −M ] = 10 9

n→∞
0 .

An interesting example of the use of the martingale convergence theorem is Polya's Urn: An
urn contains b blue balls and r red balls. At each time we draw a ball out, then replace it
with c more balls of the color drawn. The proportion of red balls (for instance) in the urn is
a non-negative martingale, and hence this proportion converges to a RV (which must take
values in [0, 1]). In the special case where initially r = b = 1 and c = 2 it turns out that the
limiting RV is uniformly distributed on [0, 1].

Theorem (uniformly integrable submartingale). For a submartingale {Mn}n≥0, the
following are equivalent:

• It is uniformly integrable.

• It converges a.s. and in L1.

• It converges in L1.

If {Mn} is a martingale then also:

• ∃ an integrable RV M s.t. Mn = E[M | Fn] .

Corollary (Levy 0-1 law). Denote Fn ↗ F∞ (that is F∞ = σ(∪Fn), the smallest σ-�eld
containing the union), then for every integrable RV X it holds

E[X | Fn] −→ E[X | F∞] a.s. and in L1

The special case where X = 1A for A ∈ F∞ and then P(A | Fn) −→ 1A generalizes the
Kolmogorov 0-1 law (this last remark is left as food for thought for the reader).

3 Harmonic Functions

From this point on we assume G to be a locally �nite graph (that is deg(v) <∞ ∀v ∈ G ).

De�nition. h : G→ R is said to be harmonic if

h(x) =
1

|N(x)|
∑

y∈N(x)

h(y)
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where N(x) = {y | y is a neighbor of x inG}.

In other words, for every x, if we start a SRW on G {Zn}n≥0 beginning at x, then h(x) =
E[h(Z1)]. Notice that this means that {h(Zn)}n≥0 is a martingale for any starting vertex x
(acknowledging that h(Zn) takes only �nitely many values and thus is integrable).

Examples.

1. Constant functions are harmonic.

2. On Zd, linear functions are harmonic. (exercise)

De�nition. The space of bounded harmonic functions is called the Poisson Boundary of
G. G is called Liouville if it has no non-constant bounded harmonic functions.

Remark. All the above can be de�ned with respect to other RWs than the SRW.

Example. Consider T2 the in�nite binary tree (for our purposes we de�ne the tree to
be in�nite both upwards and downwards from the origin, in order to be coherent with the
general case of Cayley graphs, which would not be further discussed here). We de�ne an end
of the tree to be an in�nite simple path from the origin. Then, for a collection of ends A we
can de�ne h(x) = Px(infinite trajectory beginning at x agrees with some end in A i.o.). It
is easy to check that h is a bounded harmonic function, indeed

h(x) = Px(”ending inA”) = E[Px(”ending inA” | Z1)] = E[PZ1(”ending inA”)] = E[h(Z1)] .

But, h is non-constant, for certain choices of the group A. For instance, if we choose A to be
the bottom half of the graph, then the probability of �ending in A� is di�erent for vertexes
from the top half and vertexes in A. A RW beginning at the top half has a 2/3 probability
of going up at every step (until it, possibly, crosses the origin downwards), as where on the
bottom half the 2/3 probability is �directed� down. Thus, the further up we begin the RW
(with respect to the origin) - the smaller the probability to end at the bottom half. Hence,
T2 is not Liouville.

Remark. Z is Liouville.

Proof. For h harmonic on Z, the de�nition implies that h(x+ 1)− h(x) = h(x)− h(x− 1).
So, if h is non-constant, there exists a y s.t. h(y + 1)− h(y) = a 6= 0, which means h has a
�xed slope, and thus cannot be bounded.

Question is, what about Z2? Is it Liouville?

Proposition. On any connected recurrent graph (meaning a SRW on it is recurrent), any
non-negative harmonic function is constant.

In particular, the graph is Liouville (because any bounded harmonic function must be con-
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stant, otherwise by adding a large enough constant we would obtain a non-negative non-
constant harmonic function).

E.g. Z2 is Liouville.

Proof. Fix x, y ∈ G and let h be a non-negative harmonic function. We need to show
that h(x) = h(y). De�ne {Zn}n≥0 to be a SRW on G starting at x. {h(Zn)}n≥0 is now a
non-negative martingale, and so the martingale convergence theorem holds. Consequently,
h(Zn) −→ H a.s. (where H is some RV). We have assumed G is recurrent, thus P(Zn =
x i.o.) = 1, so h(Zn) must converge to h(x) a.s. But by recurrence it also holds that
P(Zn = y i.o.) = 1, and similarily h(Zn)→ h(y) a.s. Therefore h(x) = h(y) and we're done.
�

In the next lecture we will discuss the question - is Zd Liouville for all d?
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