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Lecture 6

Lecture date: Apr 04, 2011 Scribe: Eyal Weinberger

The scribe

Tags for today’s lecture:

This lecture deals with Bounded Harmonic Functions and special σ-fields, the connection
with those σ-fields and bounded harmonic functions. We will introduce the concept of Cou-
plings, successful couplings and successful shift couplings, and see the connection between
bounded harmonic functions and successful couplings. We will finish the lecture with a
little introduction about SRW on Cayley graphs of groups.

1 Harmonic Functions In Context with Markov Chains

Let E be a state space, countable and discrete, ϵ a σ-field.

Define P : E × E → [0, 1], P(x, y) the probability to move from x to y in one step.

∑
y∈E

P(y, x) ∀x ∈ E

Definition 1 h : E → R is called Harmonic function if h(x) =
∑

y∈E P(x, y)h(y). in other
words: h(x) = Exh(Z1), where {(h(Zn)}n≥0 is a martingale.

Definition 2 A space time harmonic function is a function h : ×{0, 1, . . .} → R such that
h(x) =

∑
y∈E h(y, n+ 1) in other words: {(h(Zn, n)}n≥0 is a martingale.

Generalization of Last Class: If P is irreducible and reccurent then all bounded harmonic
functions are constant.

Irreducible: Can get from every x ∈ E to every y ∈ E in a finite amount of steps.

Reccurent: Px(Zn = x infinitely often) = 1, ∀x ∈ E

on the Space of Trajectories E∞ = E × E × . . . we have product σ-field ϵ∞.
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Define Θ : E∞ → E∞ to be Θ(x0, x1, . . .) = (x1, x2, . . .), and

F = Θ−1
n (ϵ∞)

the events not depending on first n− 1 steps.

Definition 3 Tail σ-field:

T :=

∞∩
n=0

Fn

it means that if U is a RV measurable with respect to T then ∃functions Un for every n,
such that

U(x0, x1, . . .) = Un(xn, xn+1, . . .) ∀n

Definition 4 Invarient σ-field:

I :=
{
B ∈ ϵ∞|B = Θ−1(B)

}
it means that if U is a RV measurable with respect to I then

U(x0, x1, . . .) = U(x1, x2, . . .)

Exercise I ⊆ T .

Examples:

1. SRW on Zd :

(a) Visit the origin infinitely often ∈ I
(b) Sum of trajectory is infinite ∈ I
(c) Parity of initial point ∈ T (if (x1, . . . , xd) ∈ Zd then parity =

∑
xi (mod 2)).

Since Z is bipartite, we change parity at every step.

Pµ(parity of some initial step is even) may be in 0, 1 for some µ

2. In a periodic Markov Chain, the initial period ∈ T .

3. SRW on a completely binary tree:

(a) Ending up in left subtree ∈ I.
(b) parity of initial position ∈ T .
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Definition 5 Identification Mod 0:

Say U, V RV’s are equal mod 0 if Px(U ̸= V ) = 0 ∀x

We will only consider T and I mod 0.

Theorem 6 (Fundemental relationship between bounded harmonic functions, T and I)

1. There is a bijection between bounded RV mod 0 U ∈ T and bounded spacetime har-
monic functions given by U ∈ T ⇒ h(x, n) = ExUn. where U(x0, . . .) = Un(xn, . . .)

2. there is a bijection between bounded RV mod 0 U ∈ I and bounded harmonic functions
given by U ∈ I → h(x) = ExU

Proof

1. ⇒
fix U ∈ T define h(x, n) = ExUn, h is clearly bounded.

h(x, n) = ExUn = ExEx(Un|Z1) = ExEZ1Un+1 = Exh(Z1, n+ 1)

so h is spacetime harmonic.

⇐
Fix h(x, n) bounded spacetime harmonic function. For every x, {h(Zn, n)}n≥0 is a
bounded martingale hence converges. Define U(Z0, Z1, . . .) as the limit. It is a tail
RV isnce it is a limit.

The mapping is 1:1 since if h(x, n) = ExUn then by the Levy 0-1 law (or martingale
convergence theorem for UI martingale) limn→∞ h(Zn, n) = U(Z0, . . .) under Px.

2. similiar proof.

notice: h(x) = ExU = ExEx(U |Z1) = ExEZ1(U) = Exh(Z1)

U(Z0, Z1, . . .) = U(Z1, Z2, . . .)

2

2 Couplings

Definition 7 For two distributions µ, ν on state spaces S and T , a coupling is a joint
distribution on S × T denoted (X,Y ) such that X ∼ µ, Y ∼ ν.
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We will use this when µ is Px on space of trajectories or PΠ, and ν is Py for x, y ∈ E
Sometimes coupling is used for a coupling of Px and Py which makes the trajectories collide
and continue together.

Under a coupling of Px and Py let T = min(n|Zx
n = Zy

n). If P(T < ∞), call it a successful
coupling.

Proposition 8 If ∀x, y there exist a successful coupling of Px and Py then T is trivial, or
in other words all bounded harmonic functions are constant.

T is trivial: ∀µ,A ∈ T Pµ(A) ∈ {0, 1}

Proof Fix x, y and let h be a bounded spacetime harmonic function. Need to show
h(x,m) = h(y,m) ∀m has a successful couplings of Px and Py.

fix m, notice {h(Zn, n+m)}n≥0 is a bounded martingale hence converges. In the coupling
let the trajectory continue together after colliding.

|h(x,m)− h(y,m)| = |Exh(Zx
n, n+m)− Eyh(Zy

n, n+m)| =
E[h(Zx

n, n+m)− h(Zy
n, n+m)]1(T>n)| ≤ 2MP(T > n) →n→∞ 0

where M = suph. 2

Definition 9 a successful shift coupling of Px and Py is a coupling s.t.

P(∃n, ∃k, Zx
n = Zy

n+k) = 1

Can ask is this equality holds ∀n ≥ n0

Proposition 10 if ∀x, y there exist a successful shift coupling of Px and Py then I is trivial.
In other words all bounded harmonic functions are constant.

Proof fix x, y, h a bounded harmonic function, assume P(∀n ≥ N0, ∃k, Zk
n = Zy

n+k) = 1

|h(x)− h(y) = |E[h(zxn)− h(zyn)]1(N0>n) ≤ 2MP(N0 > n) →n→∞ 0

2

Theorem 11 the following are equivelant:

6-4



1. mathcalT is trivial.

2. All bounded spacetime harmonic functions are constant.

3. there exist a successful coupling ∀x, y ∈ E

4. The markov chain is Mixing.

5.
∥∥∥Pµ(Zn ∈ •)− Pµ′

(Zn ∈ •)
∥∥∥
TV

→n→∞ 0 ∀µ, µ′ initial distributions.

6.
∥∥∥Pµ(θnZ ∈ •)− Pµ′

(θnZ ∈ •)
∥∥∥
TV

→n→∞ 0 ∀µ, µ′ initial distributions.

(∥π − π′∥T V = 1/2
∑

x |π(x)− π′(x)| = {Max Events A}π(A)− π′(A))

Theorem 12 Similarly

1. mathcalI is trivial.

2. All bounded harmonic functions are constant.

3. there exist a successful shift coupling ∀x, y ∈ E

4. The markov chain is Cesaro-Mixing.

5. 1
y

∥∥∥∫ t
0 P

µ(Z ⌊s⌋ ∈ •)ds−
∫ t
0 P

µ′
(Z ⌊s⌋ ∈ •)ds

∥∥∥
TV

→n→∞ 0 ∀µ, µ′ initial distributions.

6. analog with averaging

Proof if T is a successful coupling then ∀A ⊆ E event:

Pµ(Zn ∈ A)− Pµ′
(Zn ∈ A) = |E(1(Zµ

n∈A) − 1
(Zµ′

n ∈A)
) ≤ P(T > n)

⇒ dTV (Z
µ − Zµ′

) ≤ P(T > n)

(the coupling inequality). 2

Remark 13 There exist maximal coupling, meaning equality is attained ∀n

Example 14 on Zd : T ⊇ parity of initial point,

I is trivial
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3 Shift Coupling for Px, Py

1. Case 1: All coordinates difference of x and y are even. In this case we will have a
successful coupling. Makes the walks always move on the same coordinate. If they are
equal on that coordinate move together, if not, move independently. By recurrence of
1D SRW this is a successful coupling.

2. Case 2: Move only first walk until add coordinates differences are equal. Countinue
as Case 1.

Remark 15 1. On Zd there are on non-constant harmonic functions which are

(a) non negative, or

(b) sublinear.

2. T = σ{Parity of initial point is even}. Left as an Exercise.

Example 16 An irreducible recurrent chain with all states of period d (meaning: gcd(return
possible times)=d)

⇒ T = σ{the d possible periodic classes for starting point}

Example 17 Long range RW on Z (ornsteins coupling).

Proposition 18 If Sn is a RW on Z, irreducible and aperiodic, then T is trivial.

Proof fix x, y ∈ Z need to find a successful coupling.

Take M large enough so that walk coordinates to have only steps of Magnitude ≤ M is still
ireducible and aperiodic. Have the two walks take all jumps ≥ M together. Small jumps
are done independently.

We have now coupled Sx
n and Sy

n. Notice Sx
n − Sy

n is a RW with a bounded increment
distribution and mean 0, so Sx

n −Sy
n is recurrent. It starts at x− y and by aperiodicity and

irreducibility it has all of Z as possible values, hence P(Sx
n − Sy

n i.o.) = 1 2

Example 19 RW on Regular tree: It is possible to prove that I = σ{ending brance}, T =
σ{I, parity}
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4 SRW on Cayley graphs of groups

G a group, S set of generators.

Open Question: Is Liouville is a group property?

Remark 20 Liouville is not preserved under rough isometries (quasi-isometries)

Theorem 21 1. Liouville ⇔ for SRW limn→∞
d(Sn,starting point)

n = 0

2. Kaimanovich-Vershik: Liouville ⇔ entropy of Sn

n →n→∞ 0

entropy(X) = −
∑

x P(X = x)Log(P(X = x))

Example 22 Lamplighter Group for Z2 = Z/2Z, G group.

Cayley Graph parameterized by: {g, f : G → {0, 1}}

where: g - position of lamplighter,

f - state of lamps

Proposition 23 transient G ⇒ Lamplighter on G is not Liouville.

Proof Lamp on origin remains lt from some point on ∈ I 2

Proposition 24 recurrent G ⇒ Lamplighter is Liouville.

Left as an exercies.

References
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