
Random Walks and Brownian Motion Instructor: Ron Peled

Tel Aviv University Spring 2011

Lecture 8

Lecture date: Apr 29, 2011 Scribe: Uri Grupel

In this lecture we compute asumptotics estimates for the Green’s function and apply it to
the exiting annuli problem. Also we define Capacity, Polar set Prove the B-P-P theorem of
Martin’s Capacity for Markov chains[3] and use apply it on the intersection of RW problem.

Tags for today’s lecture: Green’s function, exiting annuli, Capacity, Polar set, Martin
Capacity, intersection of RW.

1 Asymptotics for Green’s funcion

Here we show the Asymptotics for Green’s funcion and application for exiting annuli in
dimension d ≥ 3
Reminders:

• Local Centeral Limit Theorem (LCLT):

sup
x∈Zd x and n of same parity
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• Large Deviation: ∃Cd, cd > 0 such that ∀r, n P(|Sn| ≥ r
√
n) ≤ Cde

−cdr
2

• Green’s Function: In dimension d ≥ 3 the Green’s functions is defined by

G(x, y) = G(x− y) = Ex(number of vists to y) =
∞∑

n=1

Px(Sn = y)

Since in d = 1, 2 this sum is always ∞ In dimesion d = 1, 2 the ptential kernel plays
a similar role

a(x) =
∞∑

n=1

P(Sn = 0)−P(Sn = x) = ”′G(0)−G(x)”′

The use of quation marks is due to the fact that in dimension d = 1, 2 the sum in the
Green’s function definition would be ∞
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Theorem 1 For d ≥ 3, G(x) ≈ ad|x|2−d as |x| → ∞ where ad = d
2Γ

(
d
2 − 1

)
π− d

2 = 2
(d−2)wd

and wd = vol(Bd) the volume of the unit ball in R
d.

More precisley ∀α < d, G(x) = ad|x|2−d + o(|x|−α) as |x| → ∞

ProofFix x 6= 0 of even parity, G(x) = E(number of visits to x) =
∑∞

n=1P(Sn = x).
Note first

∞∑

n=1

p̄(2n, x) =
∞∑

n=1

2

(
d

2πn

) d
2

e−
d|x|2

4n =
∗

∫ ∞

0
2

(
d

2πt

) d
2

e−
d|x|2

4t +O(|x|−d) =

=
d

2
Γ

(
d

2
− 1

)

π− d
2 |x|2−d +O(|x|−d)

Where O(|x|−d) is with respect to |x| → ∞. Note that the estimate in ∗ is according to the
order of the first term for |x| ∼ n
Now G(x) =

∑∞
n=1 p̄(2n, x) + E(2n, x) we need only to show that for any α < d

∑∞
n=1E(2n, x) = o(|x|−α), to see this we pick a threshold n0 close to |x|2 E.g, n0 =

c|x|2√
log |x|

,

then write

∞∑

n=1

E(2n, x) =

⌊n0⌋∑

n=1

E(2n, x)

︸ ︷︷ ︸

By large deviation and choice of c =O(|x|−d)

+
∞∑

⌊n0⌋+1

E(2n, x)

︸ ︷︷ ︸

By LCLT =O(n−d
0

)=o(|x|−α) for any α<d

For x of odd parity note G(x) is harmonic for x 6= 0, so G(x) = 1
2d

∑2d
i=1G(x+ ei) (where

ei are the unit vectors) giving the result.

Remark 2 1. In the continuem, for Brownien Motion in R
d (d ≥ 3) the Green function

is exactly ad|x|2−d, this function is harmonic except at x = 0 and has laplacian −δ0
at 0.

2. The error in the previus theorem is even O(|x|−d)

Application (exiting annuli or quantitative transience)

In d ≥ 3 denote An,m = {x ∈ Z
d; n < |x| < m}, τn,m = min{j; Sj /∈ An,m}, then for

x ∈ An,m

Px(|Sτ | ≤ n) =
|x|2−d −m2−d +O(n1−d)

n2−d −m2−d

In particular taking m → ∞, we get Px(∃j; |Sj | ≤ n) = |x|2−d

n2−d + o(n−1)

ProofSince G(x) is harmonic except in x = 0, Mj := G(Sj ∧ τ) is a bounded martingale so

G(x)
︸ ︷︷ ︸

≈|x|2−d

= ExMj =
optional sampeling
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= P(|Sτ | ≤ n)Ex(G(Sτ )| |Sτ | ≤ n)
︸ ︷︷ ︸

≈n2−d

+(1−P(|Sτ | ≤ n))Ex(G(Sτ )| |Sτ | ≥ m)
︸ ︷︷ ︸

≈m2−d

Noting that G(x) = |x|2−d+O(|x|1−d) (weaker than the error in the theorem). By isolation
P(|Sτ | ≤ n) we get the result. Similarly one can prove

Proposition 3 In d ≥ 3 letting Cn = {x ∈ Z
d; |x| < n} and τ = τn = min{j; Sj /∈

CnorSj = 0} for x ∈ Cn

P(Sτ = 0) =
ad

G(0)
(|x|2−d − n2−d) +O(|x|1−d)

as |x| → ∞

Reminder: (Second type of Green’s function) For any A ⊆ Z
d, GA(x, y) =

Ex(number of visits to y before exiting A)

Question 4 How do we estimate Ga(x, y)?

Definition 5 For A ⊆ Z
d we define the boundry of A as ∂A = {x ∈ Z

d; x /∈ A, x ∼
y for some y ∈ A}

Proposition 6 For finite A ⊆ Z
d ∀x, z ∈ A

GA(x, z) = G(x, z)−
∑

y∈∂A

HA(x, y)G(y, z)

where HA(x, y) = Px(y is first exit point of A)

ProofLet τ = min{j; Sj /∈ A} then

GA(x, z) = Ex





τ−1∑

j=0

1Sj=z



 = Ex





∞∑

j=0

1Sj=z −
∞∑

j=τ

1Sj=z





The first term is G(x, z), and the second is the same as in the proposition.

Combining proposition 3 and proposition 6 we have the following proposiotion

Proposition 7 GCn(x, 0) = ad(|x|2−d − n2−d) +O(|x|1−d) ProofExercise.

Analogous results for dimension d = 1, 2 [1][2]
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• In d = 1: a(x) = |x|.
In d = 2: ∃k such that ∀α < 2

a(x) =
2

π
log |x|+ k + o(|x|−α)

With k = 2γ
3 + 3

π log 2 where γ = limn→∞
∑n

j=1
1
j − logn the Eulrt constant.

• GA(x, z) =
∑

y∈∂AHA(x, y)a(y − x)− a(z − x) for some finite A and x, y ∈ A

• For d = 2 In the annulus An,m, ∀x ∈ An,m

Px(|Sτ ≤ n) =
logm− log |x|+O(n−1)

logm− log n

(Quantitative recurrence)

• For d = 2 x ∈ Cn, ∀α < 2

GCn(x, 0) =
2

π
(log n− log |x|) + o(|x|−α) +O(n−1)

2 Capacity

In this section we define Capacity and Polar sets, intoduce Kakutanis theorem charactriz-
ing polar sets, and prove the Benjamini-Pemantle-Peres theorem which gives a quantitive
connection between the Capacity of a set and a Markov Chain on the set. In the end of the
section we see some application to the intersection of random walks. This section follow [3]

Definition 8 Given a measure space (Λ,F), a measurable function F : Λ × Λ → [0,∞)
(kernel) and a finite measure µ of Λ, the underlineF - energy of µ with respect to F is

IF (µ) =

∫

Λ

∫

Λ
F (x, y)dµ(x)dµ(y)

Remark 9 It is useful to think of Λ ⊆ R
3, µ charge density of a certain material and

F (x, y) = |x− y|−1

Definition 10 The capacity of Λ with respect to F is

capF (Λ) =

(

inf
µ

IF (µ)

)−1

Where µ is a probability measure on Λ, and ∞−1 = 0.
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Remark 11 Capacity is monotone increasing in the set. It is a measure of the size of λ
with respect to F .

Remark 12 For is Λ will be a countable with F = {all subsets of Λ}
Sometimes we’ll also mention Λ ⊆ R

d with F Borel σ-Field.

Kakutani’s theorem (1944):

Definition 13 A Borel A ⊆ R
d is called Polar if Px(∃t > 0, B(t) ∈ A) = 0 ∀x ∈ R

d for a
Brownian Motion B(t)

Theorem 14 (Kakutani) A Borel A ⊆ R
d is Polar if and only if capF (A) = 0 for

F (x, y) =

{∣
∣
∣log

(
1

|x−y|

)∣
∣
∣ d = 2

1
|x−y|d−2 d ≥ 3

Now let {Xn} be a Markov chain on a countable set Y , with transition probability p(x, y).
Let

G(x, y) = Ex(# visits to y) =
∞∑

n=0

p(n)(x, y)

Theorem 15 (Benjamini, Pemantle, Peres) If {Xn} is a transient chain (any state is
visited onlt finitly many times a.s) then for all starting point ρ ∈ Y and any Λ ⊆ Y

1

2
capK(Λ) ≤ Pρ(∃n; Xn ∈ Λ) ≤ capK(Λ)

where K is the Martin kernel K(x, y) = G(x,y)
G(ρ,y) . Furthermore, letting cap

(∞)
K :=

infΛ0 finite capK(Λ \ Λ0)

1

2
cap

(∞)
K (Λ) ≤ P(Xn ∈ Λ i.o) ≤ cap

(∞)
K (Λ)

ProofTo get upper bound it is enough to find one µ. Let τ = min{n; Sn ∈ Λ} (τ = ∞ if
Λ is not hit), for x ∈ Λ ν(x) = Pρ(τ < ∞, Sτ = x) ν(Λ) = Pρ(τ < ∞) ≤ 1 if ν(Λ) = 0,
nothing to prove. Assume 6= (Λ) > 0. Note, ∀y ∈ Λ,

∫

Λ
g(x, y)dν(x) =

∑

x∈Λ

ν(x)
∞∑

n=0

Px(Xn = y) = G(ρ, y)
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so
∫

ΛK(x, y)dν(x) = 1. Hence Ik

(
ν

ν(Λ)

)

= ν(Λ)−1 and capK(λ) ≥ ν(Λ)

For the lower bound, use the second moment method. Given a probability measure µ on Λ,
let

z =

∫

Λ
G(ρ, y)−1

∞∑

n=0

1Xn=y

︸ ︷︷ ︸

Eρ()=G(ρ,y)

dµ(y)

By Fubini, Erhoz = 1

Erhoz2 = Eρ

∫

Λ

∫

Λ
G(ρ, z)−1G(ρ, z)−1

∑

m,n>0

1Xm=z, Xn=ydµ(y)dµ(z) ≤

≤ Eρ2

∫

Λ

∫

Λ
G(ρ, y)−1G(ρ, z)−1

∑

0≤m≤n

1Xm=z, Xn=ydµ(y)dµ(z)

For each m, Erho
∑

n≥m 1Xm=z, Xn=y = Prho(Xm = z)G(z, y) by the markov property.
Taking the sum over m

Eρz2 ≤ 2

∫

Λ

∫

Λ

G(z, y)

G(ρ, y)
dµ(z)dµ(y) = 2IK(µ)

By Cauchy-Schwartz:

Prho(∃n,Xn ∈ Λ) ≥ Prho(z > 0) ≥ (Eρz)2

Eρz2
≥ 1

2IK(µ)
⇒ P(∃n; Xn ∈ Λ) ≥ 1

2
capK(Λ)

Proving the first part of the theorem.
For the second part, note that by transience

{Xn ∈ Λ i.o} = stackrelmod 0= ∩Λ0 finite {visitsΛ \ Λ0}

Hence if Λn is a sequence of finite sets increasing to Λ, the by monotonicity

P(visits Λ i.o) = lim
n→∞

Pρ(visitsΛ \ Λ0)

and
cap

(∞)
K (Λ) = lim

n→∞
capK(Λ \ Λ0)

Corollary 16 In Z
d, d ≥ 3, for any A ⊆ Z

d, we deduce

1

2
cap

(∞)
K (A) ≤ P(A is hit i.o)

︸ ︷︷ ︸

∈{0,1} by Hewitt−Savage 0−1 law

≤ cap
(∞)
K (A)

So A is hit i.o a.s if and only if cap
(∞)
K (A) > 0, now note that this remains true if we replace

K by F (x, y) = |y|2−d

1+|x−y|2−d since by the asyptotics of G(x) we have c ≤ F (x,y)
K(x,y) ≤ c′ for some

c′, c > 0.
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Remark 17 In a different application, the B-P-P theorem show a theorem of Lyons that
the chance that a path from root to leaves survive under a general Perculation (keep each
eage with probability pe independet) Process is given up to 1

2 by a certain capacity on leaves,
by looking at the Markov chain of surviving leaves from left to right.

Remark 18 1. The theorem still applies if the chainis not transient but G(x, y) < ∞
∀x, y ∈ Λ

2. You can replace K by its symmetrized version 1
2(K(x, y) + K(y, x)) in the theorem,

since it doesn’t affect capacity.

Intersections of Random Walks
Define S[n,m] := {Sj ; j ∈ [n,m]}

Theorem 19 ∃c1, c2 and ϕ such that ∀n ≥ 2

c1ϕ(n) ≤ P(S[0, n] ∩ S[2n, 3n] 6= ∅) ≤ P(S[0, n] ∩ S[2n,∞) 6= ∅) ≤ c2ϕ(n)

ϕ(n) =







1 d ≤ 3
(log n)−1 d = 4

n− d−4

2 d ≥ 5

ProofTrivial uper bound for d ≤ 3 and the lower bound for d ≤ 2 followes from lower
bound for d = 3, therefore we can assume d ≥ 3. Proof is by second moment method, with
additional trick for d = 4. Denote

Jn =
n∑

j=0

3n∑

k=2n

1Sj=Sk
, Kn =

n∑

j=0

∞∑

k=2n

1Sj=Sk

By the Markov property and LCLT we get, (when k − j is even)

P(Sj = Sk) = P(Sk−j = 0) ≈ c

nd/2

So
c1n

4−d
2 ≤ EJn ≤ c2n

4−d
2

we can even get (with a bit more calculation)

EJ2
n ≤







cn d = 3
c logn d = 4

cn
d−2

2 d ≥ 5

And we get the lower bound for all d since

P(S[0, n] ∩ S[2n, 3n] 6= ∅) ≥ P(Jn > 0) ≥ (E(Jn))
2

EJ2
n
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We get the upper bpund for all d 6= 4 since

P(S[0, n] ∩ S[2n,∞) 6= ∅) = P(Kn ≥ 1) ≤ EKn

For the upper bound in d = 4 need to show

E(Kn| Kn ≥ 1) ≥ c logn

this is the expected number of pairs of times of intesec for s SRW starting in origin, this is
like what happens after ”‘first”’ intersection of walks.
Note c = EKn = P(Kn ≥ 1)E(Kn| Kn ≥ 1)

Remark 20 By taking n → ∞ we get that for BM in R
d

P(B[0, 1] ∩B[2, 3] 6= ∅)
{
> 0 d = 1, 2, 3
= 0 d ≥ 4

From the other side, it is intresting to consider

q(n) = P(S1[0, n] ∩ S2(0, n] 6= ∅)

for d = 2, 3, 4 where S1, S2 are independet SRW. Defining

Yn = P(S1[0, n] ∩ S2(0, n] 6= ∅|S1[0, n])

We have EYn = qn, and it is possible to calculate

EY 2
n = P(S1[0, n] ∩ (S2(0, n] ∪ S3(0, n]) 6= ∅) ≈

up to a constant

{
1

logn d = 4

n
d−4

2 1, 2, 3

Since 0 ≤ Yn ≤ 1 we have EY 2
n ≤ EYn ≤

√

EY 2
n

Finally one can show that in d = 4 the upper inequality us sharp q(n) ≈ 1
log n in d = 4

Known: q(n) ≈
const

n−fd. where f1 = 1, f2 = 5
8 , for d = 3 it is an open question, by

simulation it is known that f3 ≈ 0.29
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