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In today’s lecture we present the Brownian motion (BM). We start with an intuitive dis-
cussion, describing the BM as a limit of SRW. We present some of the BM properties and
try to explain why we can expect these properties from a limit of SRW. We then give a
formal definition for BM and prove such a process exists (Wiener 1923). Before the proof
we give some important facts about the normal distribution and Gaussians. We end the
lecture with some theorems about the continuity of BM.

1 Brownain motion as a limit of SRW

Let Sn be a SRW on Z. By the CLT we have Sn√
n

d
−→ N(0, 1).

Now we fix n and think of a ”SRW” on [0,1]. We take the kth step at time k
n and our

increments are ± 1√
n

with probability 1
2 each. At time 1 our RW will have value Sn√

n
so it is

roughly distributed like N(0, 1).
Now think of this RW as a random function that is defined at k

n as Sk√
n

and in between two
such points it is linear. Denote this random function by fn. It is easy to see that for any

fixed point x, fn(x)
d
−→ N(0, x).

In fact, fn
d
−→ w for some continuous function w, where the converges is in distribution

over the space of continuous functions C[0, 1]. This w is a random function that satisfies
w(t) ∼ N(0, t) and is a BM.

Remark 1 As we will see in a few lectures, this is a special case of Donsker invariance
principle. The principle describe the universality of BM and states that BM can be achieved
as a limit of every RW with mean 0 that has a finite variance. Furthermore, we can do the
same for RW with mean zero that does not have finite variance, and the limit is called a
Lévy process, and will be discontinuous at all points, with probability 1.

Before defining the BM formally, we ask ourselves what properties do we expect the BM
(denoted as {B(t)}t≥0) will have as a limit of SRW.

1. Independent increments: ∀ 0 ≤ t1≤ t2 ≤ . . . ≤ tn, B(tn) − B(tn−1), ..., B(t2) − B(t1)
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are independent.

2. Stationary increments: fix h > 0, then for any t ≥ 0, B(t + h) − B(t) has the same
distribution, independent of t ≥ 0. By the previous discussion and the CLT we
expect this distribution to be N(0, h).

3. The random function B(t) is a.s a continuous function.

2 Conformal Invariance

We can define Brownian motion in Rd as a limit of SRW in Rd. It seems reasonable that
even if we rotate or stretch the SRW, the limit of the process (again the convergence is in
distribution over the space of continuous functions) will be a BM. For this reason we can
expect the BM have some invariance properties under rotation and scaling. It turns out
that this is indeed the case. Similarly, we have seen in the first lecture that if we reverse
the order of the increments of a SRW, we still get a SRW. Thus we expect the BM to
have a time reversal property. Furthermore, the BM has a much stronger property, it is
invariant under conformal maps. More precisely, if f is a conformal map, then up to time
changes f(B) has the same distribution as B(f).
Most of these statements would be stated in a more precise manner in the next lecture and
would be proven. For more details, see chapter 1 section 1.13 and chapter 7 section 2 of
(1).

3 Formal Definition

Definition 2 A real-valued stochastic process {B(t)}t≥0 is a (linear, i.e 1 dimensional)
Brownain motion starting at point x if

1. B(0) = x

2. Independent increments: ∀ 0 ≤ t1≤ t2 ≤ . . . ≤ tn, B(tn) − B(tn−1), ..., B(t2) − B(t1)
are independent.

3. ∀ t > s, B(t) − B(s) ∼ N(0, t − s).

4. The random function B(t) is a.s a continuous function.
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Remark 3 Note that for any fixed w ∈ Ω, B(w, t) is a real-valued function. for a set of
probability one we get a continuous function. Similarly, for any fixed t, B(t) is a N(0,t)
random variable.

Definition 4 For a stochastic process B, the finite dimensional distributions are all the
joint distribution of the form (B(t1), B(t2), ..., B(tn)) for some n∈ N and t1, ..., tn∈ R.

It is easy to see that they generate (span the σ-field of) all events which depends only on
countable many co-ordinates.
Notice that properties 1,2,3 in the definition of BM characterize the finite dimensional dis-
tribution of the BM. The following example demonstrate that property 4 is not determined
by the finite dimensional distributions. However, given that property 4 does hold, the
finite dimensional distributions determine not only the events that depends only on count-
able many co-ordinates, but by continuity they also determine some events depending on
continuum of co-ordinates.

Example 5 Suppose that {B(t)}t≥0 is a Brownian motion and U is an independent ran-
dom variable, which is uniformly distributed on [0, 1]. Then the process {B̃(t)}t≥0 defined by

B̃(t) =

{
B(t) if t 6=U

B(t) + 1 if t = U

B(t) has the same finite-dimensional distributions as a Brownian motion, but is discontin-
uous at U if B is continuous at U. Hence this process is not a Brownian motion.

Theorem 6 (Wiener 1923) Standard Brownian motion exists.

It is a substantial issue whether the conditions imposed on the finite-dimensional dis-
tributions in the definition of Brownian motion allow the process to have continuous
sample paths, or whether there is a contradiction (thus there is no point studying BM).
Given that the name of our course is RW and Brownian motion, it is not so surprising
that indeed Brownian motion exists. We follow Paul Lévy’s construction of Brownian
motion, constructing it as an a.s uniform limit of continuous functions, to ensure that it
automatically a.s has continuous paths. Note that we need only to construct a standard
Brownian motion B(t), as X(t) = x + B(t) is a Brownian motion with starting point x.
The proof exploits properties of Gaussian random vectors, which are the higher dimensional
analogue of the normal distribution. Therefore, before starting the construction we will
state some facts about Gaussians that we will need. Some proofs can be found in appendix
12 of (1)
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4 Facts about Gaussians

Definition 7 A random vector X = (X1, ..., Xn) is called a Gaussian random vector if
there exists an n × m matrix A, and an n-dimensional vector b such that
XT = AY +b, where Y is an m-dimensional vector with independent standard normal en-
tries.

Proposition 8 The distribution of a Gaussian vector X = (X1, ..., Xn) is uniquely deter-
mined by its mean vector (E(X1), ..., E(Xn)) and its covariance matrix Cij = Cov(Xi, Xj).

This could be proved using characteristic functions

Corollary 9 If X = (X1, ..., Xn) is a Gaussian, and the Xi-s are pairwise independent,
then they are independent.

Corollary 10 If X1 and X2 are independent N(0, σ2) distributed, then X1+X2 and X1−X2

are independent and both are N(0, 2σ2) distributed. Also, if X1 ∼ N(μ1, σ
2
1) and X2 ∼

N(μ2, σ
2
2) are independent, then X1 + X2 ∼ N(μ1 + μ2, σ

2
1 + σ2

2) and X1 − X2 ∼ N(μ1 −
μ2, σ

2
1 + σ2

2)

Proposition 11 Let {Xn}n≥0 be a sequence of Gaussian random vectors in Rd which con-
verges in distribution to a random vector X, then X is a Gaussian with mean vector and
covariance matrix that are resp. the component-wise limits (which exist) of E(Xn) and
Cov(Xn)

Proposition 12 If X ∼ N(0, 1), then for x ≥ 1:

x

1 + x2

1
√

2π
e−

x2

2 ≤ P(X ≥ x) ≤
1
x

1
√

2π
e−

x2

2

5 BM exists

Definition 13 Let Dn = { k
2n : 0 6 k 6 2n}, then the set D =

⋃
n≥0 Dn is the set of dyadic

points in [0, 1].

D is of course dense, as if x is any point in the interval [0,1], then for each n there is a k
such that, k

2n ≤ x ≤ k+1
2n , so there is a point in Dn such that its distance from x is at most

1
2n+1 . Also, a very convenient property of D for our construction is that ∀nDn ⊂ Dn+1.
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Proof of Wiener theorem: As mentioned before it is sufficient to construct a BM starting
at 0. It is also sufficient to construct a BM on the interval [0, 1]. Assuming we have such a
construction, then we can take a sequence B0, B1, ... of independent C[0, 1]-valued random
functions with the distribution of this process, and define {B(t)} by gluing together the
parts, more precisely by:

B(t) = Bbtc(t − btc) +
btc−1∑

i=0

Bi(1) ∀t ≥ 0.

One can easily check that this random function satisfy properties 1-4 in the definition of BM.

The idea is to construct the right joint distribution of Brownian motion step by
step on the finite sets Dn. We then interpolate the values on Dn linearly and check that
the uniform limit of these continuous functions exists a.s and is a Brownian motion. To do
this, let (Ω,F , P) be a probability space on which a collection {Zt : t ∈ D} of independent,
N(0, 1) r.v-s, can be defined. Let B(0) := 0 and B(1) := Z1. For each n ∈ N we define the
random variables B(d), d ∈ Dn by induction such that:

1. ∀ r < s < t in Dn, B(t)−B(s) ∼ N(0, t− s), B(s)−B(r) ∼ N(0, s− r) and they are
independent.

2. The vectors (B(d) : d ∈ Dn) and (Zt : t ∈ D \ Dn) are independent.

3. Let I1 = [a, b], I2 = [c, d] be 2 disjoint intervals contained in [0,1], then for any
x1, x2, x3, x4 ∈ Dn such that x1, x2 ∈ I1, x3, x4 ∈ I2 we have that B(x1) − B(x2)
and B(x3) − B(x4) depend on disjoint sets of (Zt : t ∈ Dn), and in particular are
independent.

Note that we have already done this for D0 = {0, 1}. Now, assume that we have succeeded
in doing so for Dn−1. In order to do so also for Dn we only need to define B(d) for
d ∈ Dn \ Dn−1 in a way that the three properties remains valid. Set (for d ∈ Dn \ Dn−1)

B(d) =
B(d − 2−n) + B(d + 2−n)

2
+

Zd

2
n+1

2

.

Note that the first summand is the linear interpolation of the values of B at the neigh-
bouring points of d (i.e the 2 nearest points in Dn) which lay in Dn−1 (thus B is already
defined on them and satisfies our induction hypothesis). Therefore, the second property is
satisfied by the induction hypothesis and the fact that in the nth stage (B(d) : d ∈ Dn)
is defined by the previous stage only by adding Zt-s for t ∈ Dn. It is also clear that
property 3 remains valid after the nth stage of our construction. This can by seen by using
property three of the induction hypothesis on the previous stage and the fact that in the
nth stage of our construction we added to different intervals different Zt-s. We first note
that in order to prove that property 1 remains valid after the nth stage, we only need to

9-5



show that the increments B(d) − B(d − 2−n), d ∈ Dn \ {0}, are pairwise independent
and have N(0, 2−n) distribution. This is sufficient by corollary 9, as the vector of these
increments is a Gaussian. We already know by property three (that has already been
established) that the pairwise independence is true for increments of disjoint intervals, so it
remains only to verify this for increments of intervals with a common edge and while doing
so verify that the distribution of the increments is indeed N(0, 2−n). Note that by the

induction hypothesis X1 := B(d+2−n)+B(d−2−n)
2 depends only on (Zt : t ∈ Dn−1) and thus

is independent of X2 := Zd

2
n+1

2
. By corollary 10 we have that the difference (and sum) of

independent normal r.v-s is a normal r.v whose mean is the difference (resp. sum) of their
means, and its variance is the sum of their variances. Moreover, if X1, X2 are independent
with N(0, σ2) distribution, then X1 + X2 and X1 − X2 are independent normal r.v-s with

mean 0 and 2σ2 variance. Thus if X1 = B(d+2−n)−B(d−2−n)
2 , X2 = Zd

2
n+1

2
, then by the first

part of the lemma X1 is distributed N(0, 2−(n+1)) which is the same as X2. We already
saw that X1 and X2 are independent, thus since both have N(0, 2−(n+1)) distribution, we
can apply the second part of the corollary, and obtain that X1 − X2 = B(d + 2−n) − B(d)
and X1 + X2 = B(d) − B(d − 2−n) are independent and both have N(0, 2−n) distribution.
Thus property one is established and the induction step is completed.

We have defined the values of B on D. We now interpolate these values linearly as
follows:

F0(t) =






Z1 t = 1

0 t = 0

linear in between

Similarly for n ≥ 1,

Fn(t) =






Zt

2
n+1

2
t ∈ Dn \ Dn−1

0 t ∈ Dn−1

piecewise linear between consecutive points of Dn

These functions are continuous on [0, 1] and by construction satisfy for all n and d ∈ Dn,

B(d) =
n∑

i=0

Fi(d) =
∞∑

i=0

Fi(d).

To verify that the previous equality indeed follows from our construction we can use induc-
tion. It holds for n = 0. Suppose it holds for n − 1. Let d ∈ Dn \ Dn−1. First of all note
that for any m ≥ n + 1 we have Fm(d) = 0 (actually this holds ∀d∈ Dn, and this explains
why we can take either an infinite sum or the sum until i = n). Using the fact the for
0 ≤ i ≤ n − 1, Fi is linear on [d − 2−n, d + 2−n], we get:

n−1∑

i=0

Fi(d) =
n−1∑

i=1

Fi(d − 2−n) + Fi(d + 2−n)
2

=
B(d − 2−n) + B(d + 2−n)

2
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The first equality follows by the linearity argument mentioned before and the second one
by the induction hypothesis. Combine this with Fn(d) = Zd

2−
n+1

2
to get the desired equality.

Define for all t ∈ [0, 1], B(t) =
∑∞

i=0 Fi(t). We first use an estimate we have on
normal r.v-s and the Borel-Cantelli lemma to show that with probability 1 this sum is
uniformly convergent (B is a sum of normal r.v-s). This will imply B is continuous (a.s),
as the finite sums are continuous by construction, and the infinite sum is B (if gn are
continuous and uniformly converge to g, then g is continuous). We have already shown that
the other properties of the BM (concerning finite dimensional distributions of increments)
are satisfied on D, which is a dense set in [0, 1]. Therefore, by continuity we will have the
desired finite dimensional distributions of increments for all points.
By proposition 12, we have for c > 1 and large enough n,

P{|Zd| ≥ c
√

n} ≤ exp(
−c2n

2
).

So for c >
√

2log2 we get that the r.h.s is of the form an for 0 < a < 1
2 , thus by union

bound:

∞∑

n=0

P{∃d ∈ Dn s.t |Zd| ≥ c
√

n} ≤
∞∑

n=0

∑

d∈Dn

P{|Zd| ≥ c
√

n} ≤
∞∑

n=0

(2n+1)exp(
−c2n

2
) ≤

∞∑

n=0

2(2a)n ≤ ∞.

So for such c, by Borel-Cantelli lemma, there exists a.s a (random) N such that for all
n ≥ N and d ∈ Dn : |Zd| < c

√
n. Hence for all n ≥ N ,

‖Fn‖∞ < c
√

n2−
n
2 .

This upper bound implies that indeed the sum B(t) =
∑∞

i=0 Fi(t) is uniformly convergent
on [0,1] and thus B is continuous.
It remains only to verify that the increments of this process have the correct finite-
dimensional distribution. As mentioned earlier this follows directly from the properties
of B on the dense set D ⊂ [0, 1] and the continuity of B. Indeed let t1 < t2 < ... < tn be in
[0,1]. there exist t1,k ≤ t2,k ≤ ... ≤ tn,k in D with ti,k → ti . Thus by continuity of B for
all 0 ≤ i ≤ n − 1 we have:

B(ti+1) − B(ti) = lim
k→∞

B(ti+1,k) − B(ti,k).

Since lim
k↑∞ E[B(ti+1,k) − B(ti,k)] = 0 and

lim
k↑∞ Cov(B(ti+1,k) − B(ti,k), B(tj+1,k) − B(tj,k)) = 1{i=j}(ti+1,k − ti,k) =

lim
k↑∞ 1{i=j}(ti+1 − ti), we get that the increments B(ti+1) − B(ti) are independent

normal variables with mean 0 and variance ti+1 − ti as required. 2
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6 Continuity properties of BM

Definition 14 For a continuous function f on [0,1], we say that f has modulus of continuity
ϕ, if

lim sup
h↓0

sup
0≤t≤1−h

f(t + h) − f(t)
ϕ(h)

≤ 1

Theorem 15 ∃C > 0 such that with probability 1, the function ϕ(h) := C
√

−hlog(h) is a
modulus of continuity for the BM B. That is, a.s exist (a random) h0 such that |B(t + h)−
B(t)| ≤ C

√
−hlog(h) for every h < h0, for all 0 ≤ t ≤ 1 − h.

Proof This will follow from our constructions. Recall that for t ∈ [0, 1] B(t) =
∑∞

i=0 Fi(t),
and for any c >

√
2log2 with probability 1 exists (a random) N such that for any n ≥ N

we have
‖Fn(t)‖∞ < c

√
n2−

n
2 . Also, by definition Fn is piece-wise linear, and in particular ∃F ′

n(t)
and for any n ≥ N ‖F ′

n(t)‖∞ ≤ 2‖Fn(t)‖∞
2−n ≤ 2c

√
n2−

n
2 . Now for each t, t + h ∈ [0, 1], using

the mean-value theorem,

|B(t + h) − B(t)| ≤
∞∑

n=0

|Fn(t + h) − Fn(t)| ≤
l∑

n=0

h‖F ′
n(t)‖∞ +

∞∑

n=l+1

2‖Fn(t)‖∞.

Now, if we take l ≥ N , we get that the last expression is bounded by

h
N∑

n=0

‖F ′
n(t)‖∞ + 2ch

l∑

n=N+1

√
n2−

n
2 + 2c

∞∑

n=l+1

√
n2−

n
2 .

We now suppose that h is (again random and) small enough that the first summand is
smaller than

√
−hlog(h) and that l, defined by 2−l < h ≤ 2−l+1, is bigger than N . For

this choice of l the second and third summands are also bounded by constant multiples of√
−hlog(h) as both sums are dominated by their largest element. This completes the proof

2

Remark 16 The estimate in the previous theorem is in fact sharp up to the constant, as
the next theorem shows

Theorem 17 For any constant c <
√

2, a.s, for any ε > 0, there exist 0 < h < ε and
t ∈ [0, 1 − h] such that

|B(t + h) − B(t)| ≥ c
√

−hlog(h)
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Proof Fix c <
√

2 and define, for integers k, n ≥ 0, the events

Ak,n := {B((k + 1)e−n − B(ke−n) > c
√

ne−
n
2 }.

Then using proposition 12, for any k ≥ 0,

P(Ak,n) = P{B(e−n) > c
√

ne−
n
2 } = P{B(1) > c

√
n} ≥

c
√

n

1 + c2n

1
√

2π
e−

c2n
2

By our assumption on c, we have enP(Ak,n) → ∞ as n ↑ ∞. Therefore, using 1 − x ≤ e−x,
for all real x, we get:

P(
ben−1c⋂

k=0

Ac
k,n) = (1 − P(A0,n))en

≤ exp(−enP(A0,n)) → 0.

By considering h = e−n one can now see that, for any ε > 0,

P{|B(t + h) − B(t)| ≤ c
√

−hlog(h) ∀h ∈ (0, ε), t ∈ [0, 1 − h]} = 0.

2

Remark 18 We will not prove this (see (1) page 16 for a proof), but Lévy’s modulus of
continuity theorem says that:

lim sup
h↓0

sup
0≤t≤1−h

B(t + h) − B(t)
√

−2hlog(h)
= 1.

We proved one of the inequalities.
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