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Abstract

These notes accompany a sequence of lectures given at the Warsaw Probability
Summer School on Spatial Random Permutations. Topics include random uniform and
Ewens permutations, the interchange model and its analysis on the complete graph
and on trees, a continuum model for spatial random permutations in Rd related to
the Feynman-Kac representation of the ideal Bose gas and a discussion of models of
spatial random permtuations in one dimension which are collectively referred to as
band permutations. The notes are not in final state and any comments or corrections
are welcome.

1 Introduction

A spatial random permutation is a random permutation which is biased towards the identity
in some underlying geometry. For instance, given a finite graph G, can sample a random
permutation π of the vertices of G with probability proportional to exp(−d(π, Id)), where
d(π, Id) is a measure of distance between π and the identity permutation Id which respects
the geometry of G, such as

∑
v dG(π(v), v) or

∑
v dG(π(v), v)2. Later we will see other

examples, paying special attention to the so-called interchange process. The study of such
random permutations stems from physics, where they are related to the phenomenon of Bose-
Einstein condensation and to properties of quantum models such as the quantum Heisenberg
ferromagnet. We will not discuss the physical theory here and present only some aspects
of the mathematical study (but see Daniel Ueltschi’s talk for a discussion of the physical
connections). Our main focus will be on the cycle structure of spatial random permutations
and specifically on the question of whether macroscopic cycles appear.

2 Uniform and Ewens permutations

We start by discussing the cycle structure of non-spatial random permutations.
Notation. We denote by Sn the permutation group on n elements. For a permutation

π ∈ Sn and 1 ≤ i ≤ n we write ℓi(π) for the length of the cycle which contains i in π. We
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write rj(π) for the number of cycles of π whose length is exactly j, so that
∑n

j=1 jrj(π) = n
for all π ∈ Sn, and set r(π) := (r1(π), r2(π), . . . , rn(π)). We write C(π) for the number of
cycles of π.

A uniform permutation π in Sn is a random permutation having equal chance to be any
of the n! permutations of Sn. When π is uniform, is it more likely for the point 1 to be a
fixed point of π or to be a member of a giant cycle spanning all the n elements? It may
be surprising at first to learn that the cycle lengths of uniform permutations are themselves
uniform, i.e., that

P(ℓi(π) = t) =
1

n
, 1 ≤ i, t ≤ n. (1)

This fact is most easily proved by a direct calculation. It implies that a uniform permutation
has cycles with length of order n. The main question we shall pursue in this course is whether
such macroscopic cycles appear also for other distributions on permutations.

It will sometimes be useful for us to focus only on the lengths of cycles in a permutation,
forgetting the precise numbers lying in each cycle. To this end, the following combinatorial
exercise is useful.

Exercise 2.1. Let π be a uniform permutation on n elements. For every r = (r1, r2, . . . , rn)
such that rj ≥ 0,

∑n
j=1 jrj = n we have

P(r(π) = r) =
1∏n

j=1 j
rj · rj!

.

It will be of interest to embed the uniform permutation as one instance of a wider model.
The Ewens distribution on permutations with parameter θ > 0 is the probability measure
on Sn in which

P(π) =
θC(π)

Zn,θ

, (2)

where Zn,θ is an appropriate normalization constant (given explicitly by (3) below). The
case θ = 1 corresponds to the uniform distribution. The Ewens distribution was introduced
by Ewens in 1972 [17] (see also [21]) in the study of a mathematical biology model for the
genealogy of a population undergoing mutation. In this context, one is interested solely in
the induced distribution on r(π) = (r1(π), r2(π), . . . , rn(π)) The definition (2) of the Ewens
distribution and Exercise 2.1 imply that

P(r(π) = r) =
n!

Zn,θ

θC(π)∏n
j=1 j

rj · rj!

when π is sampled from the Ewens distribution, a result known as the Ewens sampling
formula (see also (3) below).

The Ewens distribution is amenable to analysis via the following algorithm for generating
a sample from the distribution, which is termed the Chinese restaurant process. Consider a
restaurant with circular tables to which n customers enter. The first customer sits at one of
the tables. Then, inductively, the k’th customer decides either to sit immediately to the right
of one of the previous k− 1 customers or to sit alone at a new table, with the probability to
sit to the right of each customer being 1

θ+k−1
and the probability to open a new table being
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θ
θ+k−1

. After all n customers sit, their positions determine a permutation π whose cycles
are exactly the tables. As an illustration, the probability that this process will generate the
permutation 4371265, whose cycle structure is (14)(2375)(6), is

P(π = 4371265) =
θ

θ + 1
· 1

θ + 2
· 1

θ + 3
· 1

θ + 4
· θ

θ + 5
· 1

θ + 6
=

θ3∏n
k=1(θ + k − 1)

.

Similarly, one sees that the probability of obtaining any permutation σ under this process is

P(π = σ) =
θC(π)∏n

k=1(θ + k − 1)
.

We conclude that the Chinese restaurant process indeed generates samples from the Ewens
distribution and, in addition, that the normalizing constant Zn,θ of the Ewens distribution
satisfies

Zn,θ =
n∏

k=1

(θ + k − 1). (3)

It follows also that the number of cycles C(π) in an Ewens random permutation satisfies

C(π) = X1 + X2 + · · · + Xn

with the (Xk) independent Bernoulli random variables such that P(Xk = 1) = θ
θ+k−1

. Thus,
in particular,

E(C(π)) = θ

(
1

θ
+ · · · +

1

θ + n− 1

)
∼ θ log(n), n → ∞,

Var(C(π)) = θ

(
1

θ

(
1 − 1

θ

)
+ · · · +

1

θ + n− 1

(
1 − 1

θ + n− 1

))
∼ θ log(n), n → ∞,

where we write an ∼ bn as n → ∞ to denote that limn→∞
an
bn

= 1. It follows that C(π)
tends to infinity as n grows in the sense that P(C(π) ≤ k) → 0 for each fixed k. Moreover,

C(π) satisfies a central limit theorem in that C(π)−E(C(π))√
Var(Cπ)

converges to the standard Gaussian

distribution. Another conclusion that we may immediately draw from the process is that

P(points i and j are in the same cycle of π) =
1

θ + 1
.

This follows as, by symmetry, we may take i = 1, j = 2, in which case the Chinese restaurant
process immediately tells us that the chance that customer 2 sits at the table of customer 1
is 1

θ+1
.

To obtain information on the ℓi(π), the length of the cycle containing i, a different
algorithm for sampling from the Ewens distribution is handy. Recall that we may write π
in cycle notation with numbers and parentheses, e.g., the permutation 4371265 is written
as (14)(2375)(6). In the algorithm we sample this cycle notation. As the first step we write
(1 to denote the beginning of the cycle notation. After k steps we have already put the
first k numbers in the notation, e.g., when k = 5 for the example permutation then we have
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written (14)(237. Then we append the next number to the current cycle, giving probability
1

θ+n−k
for it to be any of the remaining n− k numbers, or, with probability θ

θ+n−k
we close

the current cycle and open a new one by appending )(j to the cycle notation, with j being
the first number which has not already been put down. After the n’th step we finish the
notation by appending ). It is simple to check that the probability of a permutation π under
this algorithm is proportional to θC(π) and hence this algorithm also generates samples from
the Ewens distribution. The algorithm implies that

P(ℓi(π) = t) =
n− 1

θ + n− 1
· n− 2

θ + n− 2
· · · · · n− (t− 1)

θ + n− (t− 1)
· θ

θ + n− t
, 1 ≤ i, t ≤ n. (4)

This is straightforward from the algorithm for i = 1 and follows for other i by symmetry. In
particular, taking θ = 1 we recover the uniform distribution (1) for cycle lengths of a uniform
permutation. In addition, if we sort the cycles of π in terms of their minimal element and let
(ℓ′1, ℓ

′
2, · · · , ℓ′C(π)) be the lengths of cycles in this sorted order then we may conclude from the

algorithm that, for any k ≥ 1, the distribution of ℓ′k conditioned on C(π) ≥ k and ℓ′1, . . . , ℓ
′
k−1

is given by the distribution (4) with n replaced by n−
∑k−1

i=1 ℓ
′
i. With a bit of effort we also

obtain the following limit theorem.

Exercise 2.2. Prove that when π is sampled from the Ewens distribution then ℓ1(π)
n

converges
in distribution to the Beta(1, θ) distribution (for θ = 1 this is the uniform distribution on
[0, 1]). Precisely,

P(ℓ1(π) ≤ xn) → θ

∫ x

0

(1 − x)θ−1dx, as n → ∞ with 0 ≤ x ≤ 1 and θ fixed.

The preceding remarks now imply that the normalized lengths of the cycles of π sorted
by their minimal element converge in distribution to the GEM(θ) distribution named after
Griffiths, Engen and McCloskey. Precisely, that if X1, X2, . . . is a sequence of independent
Beta(1, θ) random variables then for any fixed k ≥ 1,(

ℓ′1(π)

n
,
ℓ′2(π)

n
, . . . ,

ℓ′k(π)

n

)
d−→ (X1, (1 −X1)X2, . . . , (1 −X1)(1 −X2) · · · (1 −Xk−1)Xk).

The GEM(θ) distribution is sometimes called the stick breaking construction as we may think
of generating a sample from it by starting with a stick of length 1, breaking it in two at
a location which is Beta(1, θ) distributed, then continuing to break the second piece of the
stick at a location which is Beta(1, θ) distributed relative to the length of that stick and
continuing in this manner, each time breaking the last piece of the stick at a location which
is Beta(1, θ) distributed relative to its length.

Lastly, we mention that the limiting distribution for the normalized cycle lengths in sorted
order is also known explicitly and called the Poisson-Dirichlet distribution with parameter
θ, or PD(θ) for short. This is the distribution on infinite sequences (a1, a2, . . .) with a1 ≥
a2 ≥ · · · ,

∑
ai = 1 which is obtained by sorting the infinite GEM(θ) sequence

(X1, (1 −X1)X2, (1 −X1)(1 −X2)X3, . . .), (Xi) IID Beta(1, θ).
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2.1 The random transposition shuffle

Consider a deck of n cards which is initially sorted. In order to shuffle the deck, one samples
uniformly at random two (possibly equal) positions 1 ≤ i, j ≤ n and transposes (exchanges)
the cards at positions i and j in the deck (if i = j then nothing is done). How many
such transposition steps are required for the state of the deck to be approximately uniform?
To study this question rigorously we introduce the following terms. A state of the deck
is a permutation π ∈ Sn. We write πt, t ≥ 0, for the state of the deck after exactly t
transposition steps, with π0 being the initial state of the deck which we take to be the
identity permutation. We measure the distance of the distribution of πt from uniform with
the total variation distance, given by

dt :=
1

2

∑
σ∈Sn

∣∣∣∣P(πt = σ) − 1

n!

∣∣∣∣ = sup
A⊆Sn

(
P(πt ∈ A) − |A|

n!

)
. (5)

Thus dt measures the maximum discrepancy in the probability of some event under the
distribution of πt and under the uniform distribution. In a beautiful paper, Diaconis and
Shashahani [14] proved that dt undergoes an abrupt transition from being close to 1 when
t ≤ 1

2
n log n − Cn to being close to 0 when t ≥ 1

2
n log n + Cn. This was the first example

of the so-called cutoff phenomenon, later observed in many Markov chains, in which the
distance to stationarity remains roughly at 1 for a long time and then drops to near 0 in a
much shorter time scale.

Theorem 2.3 (Diaconis-Shashahani [14]). 1. For each ε > 0 there exists C(ε) > 0 such
that if t ≤ 1

2
n log n− C(ε)n and n ≥ C(ε) then

dt ≥ 1 − ε. (6)

2. There exists a constant b > 0 such that for all C > 0 and n ≥ 10, if t ≥ 1
2
n log n + Cn

then
dt ≤ b exp(−2C). (7)

The lower bound (6) is the easy part of the theorem and will be shown below. It was
proved in [14], using a similar approach, in a more precise form when t is close to 1

2
n log n. The

upper bound (7) is the heart of the theorem and was proved in [14] using the representation
theory of the symmetric group, interpreting the random transposition shuffle as a random
walk on Sn.

Proof of part (1) of Theorem 2.3. Fix ε > 0. In order to lower bound dt we construct a
suitable event A to use in (5). The event A is the event that the permutation has many
fixed points,

A := {σ ∈ Sn : the number of fixed points of σ is at least m},

where

m :=

⌈
2

ε

⌉
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and we assume throughout that n > m. The expected number of fixed points in a uniform
permutation is 1, as follows from (1). Thus, by Markov’s inequality,

|A|
n!

≤ 1

m
≤ ε

2
. (8)

It remains to lower bound P(πt ∈ A). Let Nt be the number of cards which were not selected
either as i or j in the first t transpositions of the random transposition shuffle. We clearly
have that the number of fixed points in πt is at least Nt, so that

P(πt ∈ A) ≥ P(Nt ≥ m). (9)

Analyzing Nt leads to the coupon collector problem. Think about each step in the random
transposition shuffle as consisting of 2 half steps, one for choosing the first card i and the
other for choosing the second card j (after which the transposition takes place). Let Tk be
the number of such half steps until exactly k cards have been chosen as either i or j in some
half step. Then

P(Nt ≥ m) = P(Tn−m+1 > 2t). (10)

In addition, T1 := 1 and Tk−Tk−1, k ≥ 2, are independent, with Tk−Tk−1 ∼ Geom
(
n−k+1

n

)
.

In particular,

E (Tn−m+1) =
n−m+1∑
k=1

n

n− k + 1
= n

n∑
k=m

1

k
≥ n log n− n logm,

Var (Tn−m+1) = n

n−m+1∑
k=1

k − 1

(n− k + 1)2
= n

n∑
k=m

n− k

k2
≤ n2

∞∑
k=1

1

k2
≤ 2n2.

Lastly, Chebyshev’s inequality implies that

P
(
Tn−m+1 > n log n− n

(
logm +

2√
ε

))
≥ 1−P

(
|Tn−m+1 − E(Tn−m+1)| ≥

2n√
ε

)
≥ 1− ε

2
.

Putting the last inequality together with (8), (9) and (10) finishes the proof.

The last proof shows that a main obstacle to the fast mixing of the random transposition
shuffle is the number of fixed points, i.e., cycles of length 1, in the permutation. A main goal
of the research that we shall discuss is to show that, in a sense, the structure of the long
cycles of the permutation mixes much faster, for this shuffle and in many other situations.

3 Spatial random permutations and the interchange

process

As explained in the introduction, a spatial random permutation is a random permutation
which is biased towards the identity in some underlying geometry. One example, which will
be a prime example in our course, is the interchange process which we proceed to define.
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3.1 The interchange process

Given a (finite or countably infinite) graph G = (V,E), we denote by SV the set of permuta-
tions on the vertices of G, where we mean that an element π ∈ SV is a one-to-one and onto
function π : V → V . The interchange process (also called the stirring process in some of
the literature) gives a dynamics on permutations in SV which is associated to the structure
of the graph. Precisely, the interchange process is a permutation-valued stochastic process
(πt), t ≥ 0, with each πt ∈ SV . The initial state π0 is the identity permutation. Each edge
of the graph is endowed with an independent Poisson process of rate 1. We say that an
edge e ∈ E rings at time t if an event occurs at time t for the Poisson process associated
with e. When an edge e = {u, v} rings, the current permutation is updated by multiplying
it on the left by the transposition (u, v). Graphically, the dynamics may be visualized by
starting with particles at each vertex of V , with the particle at v being labeled by v, and
when an edge e = {u, v} rings swapping the particles at u and v. This process is well defined
when G is a finite graph but may be ill defined for an infinite graph. We do not discuss
here conditions under which the process is well defined but mention that it suffices that
the graph has bounded degree (this may be deduced from knowing that pc(G) > 0, see the
discussion around (11)), which will be the case in all our examples. One consequence of the
definition which is worth noting already is that (πt(v)), t ≥ 0, is a simple random walk on
G in continuous time for each fixed v ∈ V . These random walks are, however, generally
dependent for different v’s.

Our main object of study for the interchange process will be the cycle structure of πt at
a given time t and specifically whether macroscopic cycles arise. Here, a macroscopic cycle
means one of two things: When G is finite it means a cycle whose length is a fixed proportion
of all vertices in the graph (this notion will be used for a sequence of finite graphs Gn having
|V (Gn)| → ∞) and when G is infinite it means an infinite orbit, i.e., an infinite sequence
(vi) ⊆ V of distinct vertices with πt(vi) = vi+1.

Exercise 3.1. Let G be an infinite bounded-degree graph. Use Kolmogorov’s zero-one law to
prove that for each fixed t,

P(πt has an infinite orbit) ∈ {0, 1}.

In studying the interchange process it is useful to introduce an associated percolation
process. For a given time t, declare an edge e to be open if e rings at least once by time t.
Otherwise declare that e is closed. Thus, each edge is open independently with probability
p = p(t) = 1 − exp(−t). We focus on the connected components of open edges in this
percolation process. A moment’s thought reveals that the cycle in πt containing a given
vertex v must be contained in the connected component of v in the percolation. This fact
is quite useful in showing that no macroscopic cycles occur for small time t. For instance, if
G is infinite with bounded degree we may define

pc(G) := sup{t : all connected components in an edge

percolation on G with parameter p are finite almost surely}
(11)

and obtain that

P(πt has an infinite orbit) = 0, for all t < log

(
1

1 − pc(G)

)
. (12)
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We note also that in such case pc(G) ≥ 1
∆−1

where ∆ is the maximal degree in G (this is
a standard exercise which follows by estimating the expected number of open simple paths
of a given length which emanate from a vertex). This implies, for instance, that there
are never any infinite cycles when G = Z, the one-dimensional lattice graph. While this
approach is generally useful for small t, understanding the cycle structure of πt for large t is
a major challenge. The following conjecture of Bálint Tóth (see [30] for context) is especially
tantalizing.

Conjecture 3.2 (Tóth’s conjecture). Let G be the hyper-cubic lattice Zd.

1. If d = 2 then
P(πt has an infinite orbit) = 0, for all t ≥ 0.

2. If d ≥ 3 then there exists a critical time tc such that

P(πt has an infinite orbit) =

{
0, t < tc

1, t > tc
.

This conjecture is at present wide open and even the existence of a single pair of d and
t for which the interchange process on Zd has a macroscopic cycle at time t is unknown.
Tóth made this conjecture in the context of studying quantum statistical mechanical models
[30]. He discovered, in particular, that the question of existence of macroscopic cycles for a
variant of the interchange process (involving an Ewens-type bias factor 2C(π)) is equivalent
to the existence of spontaneous magnetization for the quantum Heisenberg ferromagnet.

Rigorous mathematical results for the interchange process are so far limited mostly to the
cases that G is the complete graph, a regular infinite tree, or the one-dimensional lattice Z
(with recent progress on the hypercube graph by Kotecký, Mi loś and Ueltschi). In the next
two sections we describe some of the known results for the complete graph and for regular
trees.

3.1.1 The interchange process on the complete graph

We start by discussing percolation on the complete graph. The standard Erdős-Rényi random
graph model is an edge percolation with parameter p on the complete graph with n vertices.
It is usually denoted by G(n, p). Define a function θ : (1,∞) → (0, 1), the survival probability
of a Galton-Watson tree with Poisson(c) offspring distribution (see also Section 3.1.2 below),
implicitly as the unique positive solution of

1 − θ(c) = exp(−cθ(c)), c > 1.

The following facts are well known and we refer the reader to Alon and Spencer [2] for a
proof (see also Krivelevich and Sudakov [22] for a recent short proof of the existence of the
phase transition, a fact which already suffices to obtain a version of Theorem 3.5 below).

Theorem 3.3. Let p = c
n
for a fixed c > 0. Then with probability tending to 1 as n tends to

infinity, the Erdős-Rényi model G(n, p) satisfies that
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1. If c < 1 then all connected components have size at most O(log n).

2. If c = 1 then the largest connected component has size of order n2/3 (with a non-trivial
limiting distribution for the normalized size).

3. If c > 1 then there exists a connected component (called the ‘giant component’) of size
(θ(c) + o(1))n while all other connected components have size at most O(log n).

(the functions implicit in the O and o notation are deterministic but depend on c).

Let us now consider the interchange process (πt), t ≥ 0, on the complete graph with n
vertices. Note that πt is naturally coupled with the random transposition shuffle which we
previously discussed, in which the number of transpositions is a Poisson random variable
with mean

(
n
2

)
t. It follows that πt becomes close to uniform in total variation distance

when t > logn
n

+ Ω(n). As we have seen, one parameter slowing down the convergence is the
number of fixed points in πt. In contrast, we now present the result of Schramm [26], proving
a conjecture of Aldous stated in [6], which shows that the structure of the long cycles in πt

converges much faster, already for t of order 1
n
.

Recall the associated percolation process with parameter p = 1 − exp(−t) of all edges
which ring at least once by time t. Let x1(t) denote the (random) size of the largest connected
component in this percolation process. As the largest cycle of the interchange process has
length at most x1(t), the previous theorem implies that when t = c

n
for a fixed c < 1 then

all cycles are of length O(log n) and when t = 1
n

then all cycles have length of order at most
n2/3. In both cases the cycles are not macroscopic (i.e., not constituting a fraction of all
vertices). Now denote by ℓ(1)(t) ≥ ℓ(2)(t) ≥ · · · ≥ ℓ(C(πt))(t) the sorted lengths of cycles in
πt.

Theorem 3.4 (Schramm [26]). Let t = c
n
for a fixed c > 1. Then

(
ℓ(1)(t)
x1(t)

, ℓ
(2)(t)
x1(t)

, . . .
)
converges

to the Poisson-Dirichlet distribution with parameter 1 as n tends to infinity.

The convergence in the theorem means that for any fixed k, the first k cycle lengths,
in sorted order and divided by x1(t), converge in distribution to the first k coordinates in
the PD(1) distribution (in particular, P(C(πt) ≥ k) → 1 as n → ∞). As x1(t) ∼ θ(c)n
by Theorem 3.3 we see that macroscopic cycles exist and their structure is as in a uniform
permutation. The theorem also implies that there are only x1(t) vertices in macroscopic
cycles. The remaining n − x1(t) vertices must belong to cycles whose lengths are at most
O(log n) by Theorem 3.3. The proof of Schramm for this theorem proceeds in two steps:
First it is proved that macroscopic cycles exist. Then it is proved by a coupling argument
that their structure quickly becomes close to that of the PD(1) distribution. We will not
present the full proof and content ourselves with presenting a weaker statement, showing
only the emergence of a macroscopic cycle, with a clever short argument of Berestycki found
after the work of Schramm.

Theorem 3.5. (Berestycki [5]) Let t = c
n
for a fixed c > 1. Then with probability tending

to one as n tends to infinity, there exists some 0 ≤ s ≤ t such that ℓ(1)(s) ≥ θ(c)2

8
n.
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Proof. Fix a c > 1 and let t := c
n
. For each s ≥ 0 let Gs be the associated percolation

process at time s, i.e., the subgraph of edges which rang at least once by time s. Recall that
C(πs) denotes the number of cycles in πs and let C(Gs) denote the number of connected
components in Gs. Observe that both C(πs) and C(Gs) may only change at the times
that edges ring, with C(Gs) either remaining the same or decreasing by 1 and C(πs) either
increasing or decreasing by 1 at each such ring. To prove the theorem we will establish
(formal versions of) the following statements: (a) C(Gs) does not decrease too rapidly for s
near t, (b) C(πs) is rather close to C(Gs) for all s, (c) In order for C(πs) not to decrease too
rapidly there must exist a macroscopic cycle.

As the first step we prove that

if t− s = n−α for some 1 < α < 2 then for any fixed ε > 0,

P
(
C(Gs) − C(Gt) ≤

(
n

2

)
(t− s)(1 − θ(c)2 + ε)

)
→ 1 as n → ∞.

(13)

Denote by x1(u) ≥ x2(u) ≥ · · · the sorted sizes of the connected components in Gu. Let

q(u) := 1 −
∑

i

(
xi(u)
2

)(
n
2

)
and observe that q(u) is a (random) non-increasing function of u. When an edge is added to
Gu, it decreases the number of connected components if and only if it connects two distinct
components. As the first edge to ring after time u is uniformly chosen among the

(
n
2

)
edges,

it follows that the conditional probability given Gu that it will decrease the number of
connected components equals q(u). As q(u) is non-increasing,

on the event {q(s) ≤ p},

C(Gs) − C(Gt) is stochastically dominated by a Poisson

((
n

2

)
(t− s)p

)
variable.

(14)

Fix ε > 0. We note that

P(q(s) ≤ 1 − θ(c)2 + ε) → 1, as n → ∞, (15)

by Theorem 3.3, using the fact that t− s = o( 1
n
). In addition, for any fixed 0 < p < 1, if N

has the Poisson(
(
n
2

)
(t− s)p) distribution then

E(N) = Var(N) =

(
n

2

)
(t− s)p

which implies, by Chebyshev’s inequality, that P(N >
(
n
2

)
(t − s)(p + ε)) → 0 as n → ∞,

using the fact that t − s = ω( 1
n2 ). As ε is arbitrary, this fact together with (14) and (15)

implies (13).
As a second step, we prove that

for any s ≥ 0, E|C(πs) − C(Gs)| ≤ 2n3/2s +
√
n. (16)
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Fix an s ≥ 0. Recall again that the cycle in πs of a vertex v is contained in the connected
component of v in Gs. Thus we trivially have C(πs) ≥ C(Gs) and need only prove that
C(πs) − C(Gs) is not too large with high probability. Call a connected component of Gs

cyclic if all its vertices belong to a single cycle in πs and otherwise call it fragmented. Call a
cycle in πs short if its length is at most

√
n and if it is contained in a fragmented connected

component of Gs. Let As denote the number of short cycles in πs. Observe that

C(πs) − C(Gs) ≤ As +
√
n (17)

as there are at most
√
n cycles which are longer than

√
n in πs. Observe next that each

edge e = (u, v) which rings causes a coagulation or fragmentation event in the current
permutation. Precisely, if σ is the current permutation and u and v are in different cycle
of σ, then the ring causes these two cycles to merge. If u and v are in the same cycle of
σ, whose length is ℓ, and v = σju, then the ring causes this cycle to fragment into the two
cycles (u, σu, . . . , σj−1u) and (v = σju, σj+1u, . . . , σℓ−1u). Now suppose that C is a short
cycle in the fragmented connected component V of Gs. Let E be the set of edges with an
endpoint in C which had a fragmentation event by time s. As V is fragmented, it follows
that E is non-empty. As C is short, we conclude that the last fragmentation event of an
edge in E by time s must have created a cycle of length at most

√
n (and possibly two such

cycles). We have proven that
As ≤ 2Bs (18)

where Bs is the number of fragmentation events which occurred by time s in which one or
both of the resulting cycles had length at most

√
n. Lastly, observe that for any permutation

σ, there are at most 2n3/2 edges whose ring would cause such a fragmentation event (at most
n choices for the first endpoint of the edge and at most 2

√
n choices for the second endpoint).

As there are on average
(
n
2

)
s rings by time s and as, given their number, the ringing edges

are chosen uniformly among all edges, we conclude that

EBs ≤
2n3/2(

n
2

) ·
(
n

2

)
s = 2n3/2s.

We thus obtain (16) by combining the fact that C(πs) ≥ C(Gs), with (17), (18) and the last
inequality.

We proceed to use (13) and (16) to finish the proof of the theorem. Let s := t − n−5/4.
We have

C(πs) − C(πt) ≤ C(Gs) − C(Gt) + |C(Gs) − C(πs)| + |C(Gt) − C(πt)|.

As

P
(
C(Gs) − C(Gt) ≤

(
n

2

)
n−5/4

(
1 − 1

2
θ(c)2

))
→ 1 as n → ∞

by (13) and
E|C(Gu) − C(πu)| ≤ (2c + 1)

√
n, u ∈ {s, t}

by (16), we conclude using Markov’s inequality that

P
(
C(πs) − C(πt) ≤

(
n

2

)
n−5/4

(
1 − 1

3
θ(c)2

))
→ 1 as n → ∞.
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However, letting Ns,t be the number of rings between times s and t and letting Fs,t be the
number of these which cause cycles to fragment we have

C(πs) − C(πt) = Ns,t − 2Fs,t.

As Ns,t has the Poisson(
(
n
2

)
n−5/4) distribution we conclude (with a similar application of

Chebyshev’s inequality as before) that

P
(
Fs,t ≥

1

7

(
n

2

)
n−5/4θ(c)2

)
→ 1 as n → ∞. (19)

Lastly, let k := 1
7

(
n
2

)
n−5/4θ(c)2 and δ := θ(c)2

8
. If the longest cycle of a permutation is shorter

than δn then the probability that applying a uniformly chosen transposition fragments a
cycle is at most n

δn

(
δn
2

)
/
(
n
2

)
≤ δ. Letting F ′

s,t denote a Poisson(
(
n
2

)
n−5/4δ) random variable,

we conclude that

P(Fs,t ≥ k) ≤ P(F ′
s,t ≥ k) + P(∃ s ≤ u ≤ t, ℓ(1)(u) ≥ δn).

Comparing the last expression with (19) yields that

P(F ′
s,t ≥ k) + P(∃ s ≤ u ≤ t, ℓ(1)(u) ≥ δn) → 1 as n → ∞ (20)

and the theorem follows since, again using Chebyshev’s inequality, P(F ′
s,t ≥ k) → 0 for our

choice of k and δ.

3.1.2 The interchange process on trees

In this section we describe results of Angel and Hammond [3, 19, 20] on the interchange
process on tree graphs. Again, we start by familiarizing ourselves with the associated per-
colation process. Our trees will be rooted and we denote their root by o. The parent of
a vertex v ̸= o is the unique vertex w adjacent to v and closer to o than v (in the graph
metric). The root vertex has no parent. The children of a vertex v are all vertices adjacent
to v except the parent of v. The (infinite) d-ary tree Td, d ≥ 2, is the tree satisfying that
each vertex has exactly d children, i.e., the tree having degree d + 1 at all vertices except
the root, which has degree d. As mentioned above, on any graph G of maximal degree ∆
one has pc(G) ≥ 1

∆−1
. For the d-ary tree this turns out to be sharp, that is pc(Td) = 1

d
. This

is a special case (with binomial offspring distribution) of the standard theorem for Galton-
Watson trees which we now discuss. We call µ an offspring distribution if µ is a probability
measure on the non-negative integers. A Galton-Watson tree with offspring distribution µ
is a random tree formed by the following process: The root has a random number of chil-
dren distributed µ. Then each child of the root has, independently, a random number of
children distributed µ, and so on and so forth, with each new child having, independently,
a random number of children distributed µ. The basic question regarding Galton-Watson
trees is whether they are infinite with positive probability. The following classical theorem
gives the answer.

Theorem 3.6. Let T be a Galton-Watson tree with offspring distribution µ. Denote by m
the expectation of µ and let p be the probability that T is infinite.

12



1. If m ≤ 1 then p = 0, unless m = 1 and µ(1) = 1 (in which case p is clearly 1).

2. If m > 1 then p > 0.

One standard approach to proving this theorem proceeds via analysis of generating func-
tions. The next exercise, which also expands on further aspects of Galton-Watson trees, uses
an approach based on martingale theory.

Exercise 3.7. Let T be a Galton-Watson tree with offspring distribution µ. Let X be a
random variable distributed as µ and set m := E(X). We assume m < ∞ (it is not difficult
to reduce the general case to this one) and also that P(X = 1) < 1. For n ≥ 0, let Zn be the
number of vertices in T at distance exactly n from the root. Let E be the event that T is
finite (the event of extinction), that is,

E := {there exists some n ≥ 1 for which Zn = 0}.

1. Prove that the process (Mn), n ≥ 0, defined by Mn := Zn/m
n is a martingale. Deduce

that P(E) = 1 if m ≤ 1.

2. Define f(s) := E(sX) for 0 ≤ s ≤ 1 (where we use the convention that f(0) = P(X = 0)
so that f is real analytic on [0, 1]). Suppose there exists some 0 ≤ ρ < 1 satisfying
f(ρ) = ρ. Prove that the process (Gn), n ≥ 0, defined by Gn := ρZn is a martingale.
Deduce that P(E) = ρ and P(Zn → ∞) = 1 − ρ. Infer also that the equation f(ρ) = ρ
has at most one solution in [0, 1).

3. Observe that f ′(s) = E(XsX) and in particular f ′(1) = m. Deduce that P (E) < 1 if
m > 1.

4. Suppose that m > 1. Write M∞ = limn→∞ Mn (why does it exist?). Since (Mn) is a
martingale one may speculate that Zn grows as mn on the event of non-extinction, i.e.,
that M∞ > 0 on Ec. The Kesten-Stigum theorem shows that the sharp condition for
this to occur is EX log(X + 1) < ∞. We will instead prove it here under the stronger
condition that

E(X2) < ∞. (21)

Prove that EM∞ = 1 under the assumption (21).

Hint: Bound E(M2
n).

5. Still under the assumptions m > 1 and (21), observe that θ := P(M∞ = 0) satisfies
f(θ) = θ and deduce that P(M∞ = 0) = P(E).

Hint: Condition on Z1.

Returning to the interchange process (πt), t ≥ 0, on a tree T we may apply the relation
(12) with percolation to deduce the following. If each vertex in T has at least d children
then

P(πt has an infinite orbit) = 0, for all t < log

(
1

1 − 1
d

)
=

1

d
+

1

2d2
+ O(d−3) as d → ∞.

Angel was the first to prove that the interchange process on a d-ary tree has infinite cycles
for certain t, establishing in particular that the above bound is rather tight for large d.
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Theorem 3.8 (Angel [3]). Let (πt) be the interchange process on the d-ary tree for d ≥ 4.
Then there exists a non-empty interval of times Id ⊂ [0,∞) such that

P(πt has an infinite orbit) = 1, for all t ∈ Id.

Moreover, for any ε > 0 there exists d0(ε) such that if d ≥ d0(ε) then we may take Id =[
1
d

+ (7
6

+ ε) 1
d2
, log(3) − ε

]
.

We note that Angel’s theorem leaves open the possibility that occurrence of infinite orbits
is non-monotone in t. That is, that for some s > t, πt has infinite cycles with probability
one while πs does not have them with probability one. Indeed, monotonicity, while natural,
is not known in general for the interchange process. Angel’s theorem was expanded upon by
Hammond who established, among other results, the monotonicity for trees of sufficiently
high degree.

Theorem 3.9 (Hammond [19, 20]). Let (πt) be the interchange process on a tree T .

1. If each vertex of T has at least two children then there exists a t0 such that for each
t ≥ t0, πt has infinite orbits almost surely. Moreover, for each d ≥ 55, if each vertex
of T has at least d children then we may take t0 = 101

d
.

2. Suppose T = Td for some d ≥ 764. Then there exists a tc = tc(d) such that

P(πt has an infinite orbit) =

{
0 t < tc

1 t > tc
.

In addition, tc ∈
[
1
d

+ 1
2d2

, 1
d

+ 2
d2

]
.

We content ourselves with explaining the main ideas in the proof of Angel’s theorem,
Theorem 3.8, and do not enter into the more involved details of Hammond’s results.

A useful tool in thinking of the interchange process is given by cyclic-time random walk
(CTRW). Recall that the interchange process permutation πT is constructed via independent
Poisson processes of rate 1 associated to each edge of the graph which are run up to time
T . Consider extending these processes to run for all positive time in a cyclic manner, by
repeating the events at [0, T ) to [T, 2T ), [2T, 3T ), etc.. Now, given these extended processes,
define the CTRW (Xt) as a walk on the graph in which X0 is a given vertex v of the graph
and which is defined for all positive time via the rule that if an edge incident to the current
position of the walker rings, then the walker switches position to the other endpoint of that
edge. Because the processes on each edge have been extended in a periodic way, it is simple
to see that if XkT = v for some integer k > 0, then the walk will repeat itself periodically for
all t > kT . In fact, it is a simple exercise to verify that the range of the walk (that is, the
set of vertices visited by the walk) exactly equals the orbit of v in the interchange process
permutation πT . In particular, the walk is transient in the sense that it visits infinitely many
vertices if and only if the orbit of v in πT is infinite.

The argument of Angel is based on finding local conditions on the ringing times at each
vertex such that the set of vertices which satisfy these conditions is a Galton-Watson sub-tree
of Td and if this tree is infinite then the interchange process has infinite orbits. Fix T > 0.
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We consider the Poisson processes on the edges of the tree as being extended periodically
from [0, T ) to [0,∞) as described above (and still refer to events of the extended processes
as rings). We denote the associated CTRW started from o by (Xt), t ≥ 0. We proceed to
discuss the local conditions in Angel’s argument. Say that a vertex v in Td, other than the
root o, is good if the edge connecting v with its parent vertex rings exactly once in [0, T ).
Write tv for this unique ringing time. The root o is always said to be good and we set to := 0.
Suppose that v ̸= o is a good vertex with a good parent u. We say that a sibling v′ of v
(that is, a child of u other than v) covers v if the ringing times of the edge (u, v′) separate
tu and tv cyclically modulo T . Precisely, if tu < tv this means that there are ringing times
both in (tu, tv) and in (tv, tu +T ) and if tu > tv this means that there are ringing times both
in (tv, tu) and in (tu, tv + T ). We say that v is uncovered if it is not covered by any of its
siblings.

Now suppose that v ̸= o is a good vertex with a good parent u and that v is uncovered.
We leave it as an exercise to check that if Xt = u for some time t then necessarily either Xt

is transient or Xs = v at some later time s > t (or both). We explain briefly the rational
behind this claim. The first time t that Xt = u must satisfy t ≡ tu modulo T since u is good.
Following this time and before going to v, the CTRW may proceed to some sibling v′ of v.
If it does so and ever returns, then the time s of its return must satisfy that it lies after tu
and before tv when thinking of the times modulo T , by the definition of v being uncovered.
From this one may deduce that if the CTRW returns from all its visits to siblings of v then
it must arrive at v.

It follows from the previous exercise that if there is an infinite simple path of good
and uncovered vertices in Td starting from some child of the root then the CTRW (Xt) is
transient (which, as explained above, is equivalent to having an infinite orbit in πT ). We
now proceed to show that the probability of this event is positive. Let Nu be the number
of good and uncovered children of a good vertex u. Observe that the distribution of Nu

does not depend on tu and hence is the same for all good vertices u. Moreover, one sees
simply that Nu is independent of (Nv)v where v goes over all other good vertices. It follows
that the connected component of the root of good and uncovered vertices, together with the
root itself, forms a Galton-Watson tree. Thus we need only show that ENu > 1 for a good
vertex u. Note that ENu equals d times the probability that a specific child v of u is good
and uncovered. The probability that v is good (that is, that the edge (u, v) rings exactly
once in [0, T )) equals T exp(−T ). Conditioned on this, assuming without loss of generality
that tu = 0 and writing tv = a, the probability that v is covered by a sibling v′ of it equals
(1 − exp(−a))(1 − exp(−(T − a))) and the covering events are independent between the
different siblings. Thus we conclude that

ENu = d Te−T

∫ T

0

(
1 −

(
1 − e−a

) (
1 − e−(T−a)

))d−1 da

T
=

= d e−T

∫ T

0

(
e−a + e−(T−a) − e−T

)d−1
da =

= 2d e−T

∫ T/2

0

(
e−a + e−(T−a) − e−T

)d−1
da.

Angel’s theorem follows from a careful analysis of this integral. Here we present a less precise
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result, noting only that

ENu ≥ 2d e−T

∫ T/2

0

e−(d−1)ada =
2d

d− 1
(e−T − e−(d+1)T/2) ≥ 2(e−T − e−(d+1)T/2)

which (as one may verify) is greater than 1 if d is sufficiently large and T ∈
[

2
d+1

, 1
2

]
. Thus

we have proven that for d sufficiently large and T in this range, the orbit of o in πT is
infinite with positive probability (which means that πT has infinite orbits almost surely by
Exercise 3.1).

3.2 Spatial random permutations in the continuum

In this section we consider a different model of spatial random permutations, in which the
permutation is of a finite set in Rd which is itself random. This model, which may seem
less natural at first sight, is well-motivated from physics as it relates to the phenomenon of
Bose-Einstein condensation. As it turns out, the model is more amenable to analysis than
the models on graphs considered so far and allows a precise determination of the structure
of macroscopic cycles. We follow the work of Betz and Ueltschi [7, 8, 9] who were themselves
continuing works of Sütő [28, 29] and Buffet and Pulé [13].

Let Λ ⊆ Rd be a cubic box of side length L. The space of configurations for the model
is ΩΛ,N := ΛN × SN , i.e., a choice of N points in Λ and a permutation on them. Given
a potential function ξ : Rd → R, ξ(x) = ξ(−x), we introduce a Hamiltonian function on
configurations by

H(x, π) :=
N∑
i=1

ξ(xi − xπi
), x = (x1, x2, . . . , xN) ∈ ΛN , π ∈ SN .

We focus on the example that ξ(x) = ∥x∥22 (corresponding to the Feynman-Kac representa-
tion of the ideal Bose gas) but other examples are possible as explained in [9] (see also the
mathscinet reference of the paper for additional restrictions). Without loss of generality we
assume that ∫

Rd

e−ξ(x)dx = 1 (22)

(by adding a constant to ξ if necessary). The main assumption (but not the only one) on ξ is
that e−ξ has a positive Fourier transform. This allows to introduce a function ε : Rd → [0,∞)
by

e−ε(k) :=

∫
Rd

e−2πik·xe−ξ(x)dx.

When ξ(x) = ∥x∥22+c we have that ε(k) = a∥k∥22+b for certain constants a, b. The measure on
configurations should be thought of as having a density proportional to exp(−H(x, π)) with
respect to Lebesgue measure dx on x and the counting measure on SN . However, for technical
reasons it is useful to introduce ‘periodized’ versions of the potential and Hamiltonian, defined

16



by

e−ξΛ(x) :=
∑
z∈Zd

e−ξ(x−Lz), (23)

HΛ(x, π) :=
N∑
i=1

ξΛ(xi − xπi
).

We finally define the probability measure on configurations as the measure with density

1

N !Y
e−HΛ(x,π) (24)

where Y is the normalization constant,

Y :=
1

N !

∑
π∈Sn

∫
ΛN

e−HΛ(x,π)dx.

The parameter here which is the analog of time in the interchange model is the particle
density ρ defined by

ρ :=
N

|Λ|
where |Λ| := Ld is the volume of Λ. The idea is that the potential suppresses particles from
jumping far (that is, |xi − xπi

| is typically small for most i), so that long cycles are only
possible at high particle density. In the sequel, whenever we take the limit Λ, N → ∞ we
mean that N and the side length L of Λ both tend to infinity in such a way that the particle
density ρ remains fixed. We introduce the critical density by

ρc :=

∫
Rd

1

eε(k) − 1
dk.

The critical density may be finite or infinite according to the choice of potential and the
dimension d. In the case that ξ(x) = ∥x∥22 + c, the critical density is finite for d ≥ 3.
Although we focus only on this case, we mention that there exist potentials for which the
critical density is finite in lower dimensions, e.g., e−ξ(x) = c(|x| + 1)−γ, 1 < γ < 2, in
dimension d = 1. Recall that for a permutation π, ℓ(1)(π) ≥ ℓ(2)(π) ≥ · · · ≥ ℓ(C(π))(π) stand
for the sorted list of cycle lengths in π. One observable for which ρc is the critical density is
the fraction of points in infinite cycles, given by

ν := lim
K→∞

lim inf
Λ,N→∞

E

 1

N

∑
i : ℓ(i)(π)>K

ℓ(i)(π)

 .

We are now ready to describe a special case of the theorem of Betz and Ueltschi.

Theorem 3.10 (Betz and Ueltschi [9]). Suppose d ≥ 3 and ξ(x) = ∥x∥22 + c with c chosen
to satisfy (22).

1. The fraction of points in infinite cycles satisfies ν = max
(

0, 1 − ρc
ρ

)
.
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2. If ρ > ρc, so that ν > 0, the cycle structure converges in distribution to the Poisson-
Dirichlet distribution, i.e.,(

ℓ(1)(π)

νN
,
ℓ(2)(π)

νN
, . . .

)
d−→ PD(1), as Λ, N → ∞.

The theorem of Ueltschi and Betz holds for more general potentials satisfying the assump-
tions described above, along with several additional assumptions. Moreover, more general
Hamiltonians are allowed in [9] in which cycle weights are introduced. Precisely, (periodized
versions of) Hamiltonians of the type

H(x, π) =
N∑
i=1

ξ(xi − xπ(i)) +
∑
ℓ≥1

αℓrl(π),

where (αℓ) are given parameters and, as before, rℓ(π) denotes the number of cycles of length
ℓ in π. The analysis of such Hamiltonians relies on earlier work of Betz, Ueltschi and Velenik
[10]. The presence of the cycle weights alters the form of the critical density. In addition,
when the αℓ converge to a constant α sufficiently fast, the cycle structure converges to
that of an Ewens permutation, i.e., to the PD(e−α) distribution. If instead the αℓ grow
logarithmically with ℓ then the Poisson-Dirichlet distribution is replaced with a single giant
cycle. That is, all points belonging to macroscopic cycles belong to a single cycle. We shall
not deal with these extensions here but mention that they are analyzed via similar techniques
to those that we discuss.

3.3 Ideas of proof of Theorem 3.10

From now on we suppose d ≥ 3 and ξ(x) = ∥x∥22 + c with c chosen to satisfy (22). We
introduce the notation

λ∗ :=
1

L
Zd

for the dual space to Λ with respect to Fourier transform. Recall that for π ∈ SN , rj(π)

stands for the number of cycles of π whose length is exactly j, so that
∑N

j=1 jrj(π) = N ,
and r(π) = (r1(π), r2(π), . . . , rN(π)). We start by calculating the distribution of r(π) for the
above distribution of random permutations.

Lemma 3.11. If (x, π) is sampled according to the density (24) then

P(r(π) = (r1, r2, . . . , rN)) =
1

Y

N∏
j=1

[
1

rj!

(
1

j

∑
k∈Λ∗

e−jε(k)

)rj]
. (25)

Proof. We first calculate the marginal probability of (x, π) on π. For each σ ∈ SN we have

P(π = σ) =
1

N !Y

∫
ΛN

e−HΛ(x,σ)dx =
1

N !Y

∫
ΛN

e−
∑N

i=1 ξΛ(xi−xσi )dx1 · · · dxN .
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The last integral factorizes as a product of integrals according to the cycles of σ, with a cycle
of length j contributing the factor, with the notation yj+1 := y1,∫

Λj

e−
∑j

i=1 ξΛ(yi−yi+1)dy1 · · · dyj
by (23)

=

=

∫
Λj

∑
z1,...,zj∈Zd

e−
∑j

i=1 ξ(yi−yi+1−Lzi))dy1 · · · dyj =

=

∫
Λ

dy1
∑
w∈Zd

∫
Rd(j−1)

e−ξ(y1−y2+Lw)−
∑j

i=2 ξ(yi−yi+1)dy2 · · · dyj =

= |Λ|
∑
w∈Zd

∫
Rd(j−1)

e−ξ(Lw−y2)−
∑j−1

i=2 ξ(yi−yi+1)−ξ(yj)dy2 · · · dyj = |Λ|
∑
w∈Zd

(
e−ξ
)∗j

(Lw),

where we write f ∗j to denote the convolution of f with itself j times. Thus,

P(π = σ) =
1

N !Y

N∏
j=1

(
|Λ|

∑
w∈Zd

(
e−ξ
)∗j

(Lw)

)rj(σ)

.

By the Poisson summation formula, for any sufficiently good function f ,∑
w∈Zd

f(Lw) =
1

Ld

∑
k∈Λ∗

f̂(k).

Putting the above calculations together and recalling that |Λ| = Ld, that e−ε is the Fourier
transform of e−ξ and that Fourier transform turns convolution into multiplication, we see
that

P(π = σ) =
1

N !Y

N∏
j=1

(∑
k∈Λ∗

e−jε(k)

)rj(σ)

.

As the probability of a permutation depends only on its cycle structure, it remains only to
plug in the result of Exercise 2.1 which counts the number of permutations with a given
cycle structure.

The usefulness of the previous result stems from the fact that it allows us to introduce a
new model on permutations in which the induced distribution on the cycle structure is the
same as that of our model. This allows us to analyze the new model and transfer the results
to the original one. The new model is in fact a model on a sequence of permutations in a
way that we now define. Denote by n = (nk), k ∈ Λ∗, a sequence of non-negative numbers,
called occupation numbers, and let NN be the set of such sequences which sum to N . A
sequence π = (πk), k ∈ Λ∗, is compatible with n ∈ NN if πk is a permutation in Snk

for each
k ∈ Λ∗. Let MN be the set of all pairs (n,π), with n ∈ NN and π compatible with n. We
introduce a probability measure on MN by

P((n,π)) =
1

Y

∏
k∈Λ∗

1

nk!
e−nkε(k). (26)
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Here Y is the same constant as in (24) and a consequence of Lemma 3.12 below is that
this is indeed a probability distribution. Given an element (n,π) ∈ MN we may think of
constructing a permutation by concatenating all the permutations in π. Such a concatenation
would give rise to a cycle structure, which we denote by r(π) = (r1(π), r2(π), . . . , rN(π)),
which is given by rj(π) =

∑
k∈Λ∗ rj(πk).

Lemma 3.12. If (n,π) ∈ MN is sampled from the distribution (26) then the distribution
of r(π) is identical to the distribution given in (25).

The proof of the lemma is a calculation, which is not overly difficult, and which we leave
as an exercise to the reader.

We continue by studying the marginal on n in the distribution on (n,π) ∈ MN given by
(26). It is straightforward that the marginal distribution is given by

P(n) =
1

Y

∏
k∈Λ∗

e−ε(k)nk , n ∈ NN .

Ueltschi and Betz now proceed to prove the following three properties:

• n0

N
converges in probability to max

(
0, 1 − ρc

ρ

)
.

• 1
N

∑
0<∥k∥<δ nk is small when δ is small with high probability.

• For all δ > 0, 1
N

∑
∥k∥≥δ nk1nk>M is small when M is large with high probability.

These properties imply that in a typical n there are either no coordinates of order N , when
ρ ≤ ρc, or the only coordinate of order N is n0, when ρ > ρc, and its value is approximately(

1 − ρc
ρ

)
N . Theorem 3.10 follows from these facts, due to the observation that if (n,π)

are distributed according to (26) then given n, the elements of π are uniform permutations.
Thus, given an n which satisfies the above three properties, there are no macroscopic cycles
in the cycle structure r(π) when ρ ≤ ρc, and the only macroscopic cycles when ρ > ρc are
obtained from the cycle structure r(π0). As π0 is a uniform permutation of size approximately(

1 − ρc
ρ

)
N , we get the convergence to the Poisson-Dirichlet distribution which is stated in

the theorem.

4 Band permutations and longest increasing subsequences

In this section we discuss various models of spatial random permutations in one dimension.

4.1 Cycle structure

Let us consider the interchange process (πt), t ≥ 0, on the integer lattice G = Z. It is clear
that πt has only finite cycles for all t, almost surely, as at any time there will be infinitely
many edges which have not rang even once. Still, one may seek to quantify this fact, asking
for instance for the expected size of the cycle containing 1 in πt. Results of this kind have
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been obtained by Kozma and Sidoravicius who prove, in a work in preparation, that this
expected length is of order min(t, n).

An important feature of the one-dimensional interchange process is its ‘band structure’.
As for each i, (πt(i)) performs a simple random walk on Z, we see that

E|πt(i) − i| ∼ C
√
t, as t → ∞, (27)

for some C > 0. Thus ‘most’ particles will have a relatively small displacement. This results
in the fact that the permutation matrix (i.e., the graph (i, πt(i)), i ∈ Z) is close to being
a band matrix with only about order

√
t diagonals. There are several other models with

this property, which we collectively refer to as band permutations, and which may well have
many properties in common with each other. We focus next on one such model, the Mallows
model.

Given a parameter 0 < q ≤ 1 and integer n ≥ 1, the Mallows distribution on Sn with
parameter q is the probability measure defined by

P(π) =
qInv(π)

Zn,q

, (28)

where Inv(π) measures the number of inversions of π, that is,

Inv(π) = {(i, j) : i < j, π(i) > π(j)}.

One may also define the Mallows distribution according to (28) with q > 1. However, this
does not lead to an essentially new distribution as one may easily check that if π is sampled
from the distribution (28) with a q = r then the permutation σ defined by σ(i) := n+1−π(i)
has the distribution (28) with q = 1/r.

It is well known that Inv(π) also equals the distance of π from the identity in adjacent
transposition. I.e., the minimal number of transpositions of the form (i, i+1) which one needs
to multiply π by in order to reach the identity. Thus, the Mallows distribution describes
a random spatial permutation for which the probability of a permutation π is proportional
to exp(−βd(π, Id)), where Id stands for the identity permutation, exp(−β) = q and d is
the adjacent transposition distance. The following lemma shows that Mallows permutations
satisfy the above ‘band property’.

Theorem 4.1. There exists a c > 0 such that for all 0 < q ≤ 1 and integer n ≥ 1, if π is
sampled from the distribution (28) then

cmin

(
q

1 − q
, n− 1

)
≤ E|π(i) − i| ≤ min

(
2q

1 − q
, n

)
.

Results of this kind have been obtained by several authors and one may consult, for
instance, [11][Theorem 1.1] for a proof. Thus, recalling that displacements of the interchange
process satisfy (27) it makes sense to compare the Mallows distribution with parameter q,
for q close to 1, with the interchange process with parameter

t =
1

(1 − q)2
. (29)
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In work in preparation with Alexey Gladkich, we obtain the following result on the cycle
structure of a Mallows permutation. The result is analogous to the result of Kozma and
Sidoravicius for the interchange model under the identification (29) and thus lend further
support to the idea that band permutations share universal properties.

Theorem 4.2. There exist C, c > 0 such that for all 0 < q ≤ 1 and integer n ≥ 1, if π is
sampled from the distribution (28) then for all 1 ≤ i ≤ n,

cmin

(
1

(1 − q)2
, n

)
≤ Eℓi(π) ≤ C min

(
1

(1 − q)2
, n

)
,

where ℓi(π) denotes the length of the cycle containing ı in π.

The proof of this result, as well as that of Theorem 4.1, rely on the fact that the Mallows
model is integrable in a certain sense. A sample from the Mallows distribution may be formed
as a simple function of independent random variables. These facts will be elaborated upon
in the talk of Gladkich.

4.2 Longest increasing subsequence

Another observable which has been studied intensively for random permutations with a one-
dimensional structure is the longest increasing subsequence. For a permutation π ∈ Sn, the
longest increasing subsequence of π, denoted LIS(π), is defined as

LIS(π) := max{k : ∃1 ≤ i1 < i2 < · · · < ik, π(i1) < π(i2) < · · · < π(ik)}.

Stanis law Ulam asked in 1961 to determine the asymptotic behavior of E(LIS(π)) when π is
a uniform permutation. It is a nice exercise to find explicit constants C, c > 0 so that

c ≤ E(LIS(π))√
n

≤ C for all n

and show additionally, using Fekete’s subadditivity lemma, that there exists a constant c0 > 0
so that

E(LIS(π))√
n

→ c0 as n → ∞.

However, determining the precise value of c0 is a surprisingly difficult question and it was not
until 1977 that Vershik-Kerov [31] and independently Logan-Shepp [23] managed to show
that in fact c0 = 2. Both proofs relied on the RSK algorithm (a different proof was given later
by Aldous and Diaconis [1]). This algorithm, discovered by Robinson and Schensted and later
extended by Knuth, is a remarkable mapping connecting two rather different objects. It is a
bijection from the permutation group Sn onto pairs of standard Young tableaux of the same
shape. The algorithm has the property that the length of the first row of the common Young
diagram in the image of a permutation π exactly equals LIS(π). When the RSK algorithm is
applied to a uniform distribution on permutations the induced distribution on the common
Young diagram in the image is called the Plancherel measure and has many connections
with the representation theory of the symmetric group. The analysis of E(LIS(π)) proceeds
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by describing the asymptotic behavior of the Plancherel measure. This and much more on
the problem can be found in the book of Dan Romik titled ‘The Surprising Mathematics of
Longest Increasing Subsequences’ [25].

Following the solution of Ulam’s problem, a natural question was to estimate also the
variance of LIS(π), for a uniform permutation π, and find its limiting distribution. This
turned out to be considerably more challenging and was solved only in 1999 by Baik, Deift
and Johansson [4].

Theorem 4.3 (Baik-Deift-Johansson). Let π be a uniform permutation. Then

LIS(π) − 2
√
n

n1/6

d−→ TW,

where TW stands for the Tracy-Widom distribution.

This theorem was a breakthrough result, proving for the first time that the variance of
LIS(π) had the unusual scaling n1/3 and linking the topic with the Tracy-Widom distribution
which was found earlier in the study of the largest eigenvalue of random matrices. The
analysis again uses the RSK algorithm and proceeds with an asymptotic analysis which
links the problem with random matrix theory.

We mention that the problem of understanding LIS(π) for a uniform permutation π may
be seen as a limiting case of the study of last passage percolation. In this problem, one
assigns IID positive random variables (Xij) to the vertices of an n×n grid. To a simple path
in this grid one then assigns a weight which is the sum of all the Xij along the path. The
problem is then to determine the maximal weight of a path which starts at (1, 1) and ends
at (n, n) and takes only right and up steps. One expects this last-passage weight to have a
similar behavior as that discovered in the Baik-Deift-Johansson theorem. This, however, has
only been proved in very special cases including the cases that the (Xij) have an exponential
and geometric distributions. In all other cases our understanding is rather lacking and, in
particular, obtaining good bounds on the variance of the last-passage weight is a well-known
open problem.

The study of the longest increasing subsequence for random band permutations is rel-
atively new. It was asked in a paper of Borodin, Diaconis and Fulman [12] “Picking a
permutation randomly from Pθ(·), what is the distribution of the cycle structure, longest in-
creasing subsequence, ...?”, where Pθ(·) refers to the Mallows distribution and more general
distributions with a similar structure. Starr [27] considered the limiting empirical measure
for a random Mallows permutation. Specifically, in the regime

q = 1 − βn

n
, βn → β as n → ∞, for some 0 ≤ β < ∞, (30)

he found that the empirical measure
∑n

i=1 δ(i/n,π(i)/n) tends weakly to a limiting measure
on [0, 1]2 which is absolutely continuous and found an explicit expression for its density as
a function of β. Mueller and Starr [24] were the first to consider the longest increasing
subsequence of a random Mallows permutation. Following the work [27] of Starr and results
of Deuschel and Zeitouni [15, 16], they proved that when q is in the regime (30) we have

LIS(π)√
n

→ f(β), in probability,
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where f is an explicitly described function. This work was complemented by the work of
Bhatnagar and the author [11], who considered the Mallows measure in the regime,

n(1 − q) → ∞ and q → 1,

and proved that

LIS(π)

n
√

1 − q
→ 1, in probability and in Lp, 0 < p < ∞.

The work [11] provides additional information on the Mallows distribution, including large
deviation results for the length of the longest increasing subsequence and the identification of
five different regimes in terms of n and q for the length of the longest decreasing subsequence.

It seems rather challenging to bring our understanding of the length of the longest in-
creasing subsequence of a Mallows permutation to the level of the Baik-Deift-Johansson
theorem, Theorem 4.3, as the RSK algorithm, an important tool in the analysis of [4], does
not seem as well suited to the study of the Mallows measure. The work [11] provides a simple
bound for the variance of the longest increasing subsequence, proving that when π has the
Mallows distribution then

Var(LIS(π)) ≤ n− 1, for all n ≥ 1 and 0 < q ≤ 1

with an accompanying concentration inequality. This bound, however, is not expected to be
of the correct order of magnitude unless q is constant as n tends to infinity.
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[29] A. Sütő, Percolation transition in the Bose gas. II, J. Phys. A 35 (2002), no. 33, 6995–
7002.
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