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Random-field Ising model

Standard Ising model:
Domain A € Z%. Boundary conditions T outside A.
Energy of configuration o: A = {—1,1} given by
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At temperature T
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Random-field Ising model (RFIM):
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with (1,,) a quenched random field.

In this talk — (n,,) independent standard Gaussians.



Long-range order

The Ising model, at h = 0, exhibits long-range order at low
temperatures.

Is this the case also for the random-field Ising model?

No, when ¢ is large! (strong disorder regime)
Proof for T = 0:

If [n,| > 2d -ﬁthen necessarily sign(o,) = sign(n,,).

At large €, such vertices are likely to separate the origin from the
boundary of A(L). Thus

A(L),+

IE’<JO>T — 0
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with convergence occurring exponentially fast in L.

Recent more quantitative results by Camia-Jiang-Newman(18).




Imry-Ma phenomenon

Imry-Ma (75) considered small € (weak disorder) and argued that:
- Long-range order occurs in dimensions d = 3.

- No long-range order in two dimensions:

Unique Gibbs state for all T = 0. Even for arbitrarily weak disorder!

An essence of the argument:

With plus bounday conditions,

is the plus configuration favored over the minus configuration?
Energy difference is

HA(L),+ (_|_) _ HA(L),+(_) ~ ] . Ld—l +¢-L

Boundary wins when d = 3.
Random field wins, due to random fluctuations, when d = 2.
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Proofs. d = 3: Imbrie (T = 0, 85), Bricmont-Kupiainen (88)
d = 2: Aizenman-Wehr (89)

(quantum: Aizenman-Greenblatt-Lebowitz 09)



Rate of decay of boundary effect

How fast does the boundary effect decay in two dimensions?

How large is E [< 0y >1T\(L)'+]?

Main result (power-law upper bound):
In two dimensions, forany T = 0, J, & > 0,

1
E [< 0 >1T\(L)’+] < v for large L

the obtained power y is very small, behaving as
~ ex (—c (1)2) for small=
Y = exp ]

&

Corollary (by FKG inequality):
A similar power-law upper bound for correlations in the RFIM

Improves Chatterjee (17) decay.
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ldeas of proof for 7" = 0

Denote ground-state configuration by a*7.
Influence-percolation: P; := [E [aé\(L)’J’] =[P (J(I)\(L)'-I_ > 0(1)\(”’_)
Main result: Power-law upper bound on P;.

First observable: The number of sites in A(€) influenced by
boundary conditions on A(3%)

Do) = [{v € A®) : 0;CO* () > 3 O™
Note: Using FKG inequality, E[D,(n)] = €2 - P,,.

Second observable: Work in annulus A(3¢) \ A(#) with + or —
boundary conditions inside and outside.

Ground-state energies E71, €77, EY7, £7F. Functions of field 7.

Surface tension: 7p(n) = —(EP* + €7~ - &P —€71),




Main steps

Step 1 (upper bound): E[t,(n)] < CJ - £ - Pp_;.

Step 2 (exact expression):

with nt =n +% inside A(¥),
= outside A(?).

Note: the sum ZveA({)) n,, increases by t standard deviations in nt

Put together, these imply the anti-concentration bound

D, 1 J Pe—q
P([E(Dg) < E) = P<|N(0,1)| > C o Pzw)




Variance bound

Anti-concentration bound:

D, 1 J Prq
P(E(Dg) <E> = P(lN(O,l)l > C E PM))

Right-hand side is constant when P, approximately a power of 4.

Step 3: This is contrasted with a variance bound:
If Py ~ {)%then Var(D,) < C -6 - (IE(Dg))Z.

Dy

1
IE(D{))<E)<C.6

Chebyshev’s inequality implies that P (

Contradiction arises if § is too small.




Step 1: surface tension upper bound

Claim: E[t,(n)] < CJ - € - Pp_4
witht,(n) = —(ETT + €77 =&~ — 7).

Proof: Let 65" be the ground state in A(3¢) \ A(¥) subjectto s, s’
boundary conditions inside and outside. Then £5%' is its energy.

Form mixed configurations 6%~ and 6

655" =055 onA(3%) \ A(2¢)

%" =0 onA(2¢) \ A(¥)
and write £5%' for their energy with s, s’ boundary conditions.

Of course, E7~ < EY~ and £V~ < €1~ by def. of ground state.
Thus () < —(EPT+ €7 —EPm —EHT)

The sole contribution to the right-hand side comes from the bonds
of dA(2¢) where o ™% differs from o™~
Taking expectation over the random field finishes the proof.




Step 2: formula for surface tension

Claim: E[t,(n)] = f_oo E[D,(n")] dt
withnt =7 +Z |n5|de A(?),
t= outside A(¥).
Dy(n"): = |{v € A®) : 03 ** (") > 0, ()}

Proof: Let £, £~ be the ground-state energies in A(3€) with +,-
boundary conditions, respectively.

SetG(n) = —(ET—&7)

Then

Te() = —(EMT+ETT €T €7 = lim G(n°) —G(n™H)
Now note that

oG s
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Step 3: Variance upper bound

Claim: If P, = {%then Var(Dy,) < C -6 - (IE(D{;))Z.
Proof: Write E,, := {a,ﬁ\ (3’?)’+(n) > aé\ (3{))’_(77)}.

Need to upper bound, for u, v € A(¥),
Cov(1{E,}, HE,}) = P(E, N Ey,) — P(E,)P(Ey)

Use P(E,) = P,y =~ (4£)7°
2
P(E, N Ey) < (P diSt(u,v)/Z) ~ (dist(u, v)/2)7%°

If § is small and, say, dist(u,v) = £/100, get

200 1

268 268
Cov(1{E,}, {E,}) < (T) — (E) ~c.5 P20

Can sum such upper bounds to get required result.




Open questions

Is there a Kosterlitz-Thouless-type transition from exponential to
power-law decay of correlations as the random field becomes
weaker?

Mechanism which would imply power-law bound: If the influence
percolation behaves like Mandelbrot percolation.

(connectivity of Mandelbrot percolation — Chayes-Chayes-Durrett)

For systems with continuous symmetry, such as the random-field XY
model, the critical dimension for long-range orderis d, = 4 (Imry-

Ma 75, Aizenman-Wehr 89).
Obtain a quantitative decay of correlations there.



