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Allocation rules

I Let Ξ be a discrete subset of Rd .

I An allocation (of Lebesgue measure to Ξ) is a measurable function
ψ : Rd → Ξ ∪ {∞} that satisfies

Vol(ψ−1(∞)) = 0,

Vol(ψ−1(z)) = 1, z ∈ Ξ,

where Vol( · ) is Lebesgue measure in Rd .

I For z ∈ Ξ, we call ψ−1(z) the cell allocated to z .
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Examples

(a) (b)

Figure: (a) The two-dimensional stable marriage allocation for a Poisson
process (picture due to Alexander E. Holroyd). (b) The gradient flow allocation
(picture due to Manjunath Krishnapur).
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Allocation rules contd.

I Let Z be a translation-invariant simple point process in Rd with unit
intensity.

I An equivariant allocation rule (of Lebesgue measure to Z ) is a
measurable mapping Z → ψZ such that:

1. a.s. ψZ is an allocation of Lebesgue measure to Z , and
2. the mapping Z → ψZ is translation-equivariant, i.e.

ψZ+x(y + x) ≡ ψZ (y) + x .

I The rule is called non-randomized if it is a function only of Z , it is
called randomized if it uses extra randomness .

I If a.s. all the cells are bounded, one can consider the allocation
diameter

X = diam(ψ−1
Z (ψZ (0))).

I One object of interest: The rate of decay of the tail P(X > R).
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Matchings in finite volume

I Consider the problem of matching n IID uniform points in a box of
volume n in Rd , to the standard lattice inside this box.

I This problem has been considered by many authors. Interested in
minimizing various functionals of the matching such as average edge
length or maximal edge length.

I In dimension 2, it was shown (Ajtai, Komlós and Tusnády 84) that
the minimal average edge length grows at rate Θ(

√
log n). The

minimal maximal edge length (Leighton and Shor 89) grows at rate

Θ(log3/4 n).
I In higher dimensions, minimal average edge length remains bounded.

Moreover, Talagrand (94) shows that the average of the function
exp(cdxd) of the edge lengths may remain bounded. More general
results exist as well.

I Questions about allocations are, in some sense, infinite volume
analogues of the matching problem. Results on finite volume
matchings can yield existence of good randomized equivariant
allocations, but new techniques are required to construct
non-randomized equivariant allocations.
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Allocation to Poisson points: Existing results

I Using Talagrand’s results, Holroyd & Peres constructed a
randomized allocation for the Poisson process in dimension d ≥ 3
with P(X > R) ≤ Cd exp(−cdRd), where X is the allocation
diameter (their result is for Y = |ψZ (0)|, but a small variant of the
proof works for the allocation diameter).

I Holroyd & Peres: If d = 1, 2 and Z is a standard Poisson point
process of unit intensity in Rd , then the allocation diameter of any
equivariant rule X satisfies EX d/2 =∞.

I Hoffman, Holroyd & Peres: For arbitrary translation-invariant point
process in Rd , d ≥ 1, constructed the stable marriage allocation.

I In the stable marriage allocation, a.s.

1. all the cells are bounded and contain their owners,
2. but not all are connected,
3. and when Z is a Poisson point process the allocation diameter X

satisfies EX d =∞.
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Picture of a stable marriage allocation

Figure: The 2-diml. stable marriage allocation for a Poisson process

Construction: Each point of the process grows a ball at unit rate and
captures all the sites it reaches first, until it obtains volume 1.
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Gravitational force field due to Poisson points

I Let Z be a standard Poisson process in Rd (”the stars”), d ≥ 3.

I Based on previous work of Nazarov, Tsirelson, Sodin and Volberg
who investigated the ”gradient flow allocation” to zeros of the
Gaussian entire function, we define the ”gravitational allocation” to
the Poisson points.

I Consider the random stationary vector field F : Rd → Rd (”the
force”) defined by

F (x) :=
∑

z∈Z, |z−x|↑

z − x

|z − x |d
, (1)

where the summands are arranged in order of increasing distance
from x .

I First investigated in work of S. Chandrasekhar. Later work by Heath
& Shepp.

I For d ≥ 3 the force converges a.s. to a continuously differentiable
vector field, off the stars.
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Gravitational allocation

I Consider now the integral curves Γ(t) of the vector field F , that is,
solutions of the equation

Γ̇(t) = F (Γ(t)).

We call these curves the gravitational flow curves. They
correspond to movement without inertia (high viscosity limit).

I Denote by Γx the integral curve with initial condition Γx(0) = x .

I To each center z ∈ Z, define its basin of attraction

B(z) = {x ∈ Rd \ Z | Γx(t) ends at z} ∪ {z}.

I Define the gravitational allocation rule

ψZ(x) =

{
z x ∈ B(z) for z ∈ Z,
∞ x /∈

⋃
z∈Z B(z).
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Picture of gravitational allocation

Figure: Simulation of a cell in 3-dimensional gravitational allocation
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Changing the order of summation

I Recall the force at x is defined by

F (x) :=
∑

z∈Z, |z−x|↑

z − x

|z − x |d

I This series does not converge absolutely!

I We will need to differentiate the force field, it will be easier to do so
if we summed the stars according to their distance from a fixed
point, say the origin.

I We find that the difference between the two orders of summation is
a.s. a constant times x , i.e.

F (x) =
∑

z∈Z, |z|↑

z − x

|z − x |d
+ κdx

I It is not hard to see that equality of expectations hold, then equality
of the RV’s is shown by controlling the variance of the difference.
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a.s. a constant times x , i.e.

F (x) =
∑

z∈Z, |z|↑

z − x

|z − x |d
+ κdx

I It is not hard to see that equality of expectations hold, then equality
of the RV’s is shown by controlling the variance of the difference.
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Why equal area in each basin?

I Take a basin of attraction B(z), and a point x ∈ ∂B(z).
I If n is the outward-pointing normal vector at x , then by the

definition of the basin of attraction, F (x) · n = 0.
I Thus, the oriented surface integral∫

∂B(z)

F (x) · n dS = 0.

I Now

div(F ) = dκd − dκd

∞∑
i=1

δzi ,

where (zi )i is the set of zeros.
I Thus, by the divergence theorem,∫

∂B(z)

F (x) · n dS =

∫
B(z)

div(F )dx = dκdVol(B(z))− dκd .

I Combining, we get Vol(B(z)) = 1.
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First result

Theorem
The mapping Z → ψZ is an allocation rule of Lebesgue measure to the
Poisson point process Z. Almost surely all the cells ψ−1(z) are bounded.
The allocation diameter X = diam(ψ−1(ψ(0))) satisfies the following tail
bounds: In dimensions 4 and higher, we have

P(X > R) ≤ C1 exp
[
− c2R(log R)

d−2
d

]
(2)

for some constants C1, c2 > 0 (depending on the dimension d) and all
positive R. In dimension 3, for any α > 0 there exist constants C1, c2 > 0
(depending on α) such that for all R > 0 we have

P(X > R) ≤ C1 exp

[
− c2

R

(log R)
4
3 +α

]
. (3)
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Characteristic exponents

In a sequel work which is in writing, we give a lower bound for the tail of
the diameter, identifying the characteristic exponent in the probability,

Theorem
For all d ≥ 3,

P(X > R) = exp(−R1+o(1)) as R →∞

Also, for Y = |ψ(0)|, the typical allocation distance, we show

Theorem
For all d ≥ 3,

P(Y > R) = exp(−Rβd+o(1)) as R →∞

where β3 = 1 and βd = 1 + 1
d−1 for d ≥ 4.
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Characteristic exponents II

All the previous results are corollaries of the following theorem. Let ZR

be the volume of the cell of the origin after a ball of radius R around
ψ(0) was removed from it. Then

Theorem
For all d ≥ 3, γ > 0. P(ZR > exp(−Rγ)) = exp(−R fd (γ)+o(1)) where

for
d ≥ 5

fd(γ) =

{
1 + 2−γ

d−2 0 < γ ≤ 2

1 γ ≥ 2

and

f3(γ) =

{
3− 2γ 0 < γ ≤ 1

1 γ ≥ 1
f4(γ) =


1 + 2−γ

2 0 < γ ≤ 4/3

4− 2γ 4/3 ≤ γ ≤ 3/2

1 γ ≥ 3/2
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Papers

I Gravitational allocation to Poisson Points. To Appear in Annals of
Mathematics.

I Phase Transitions in Gravitational Allocation. In Preparation.
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Potential energy function

I We introduce a stationary gravitational potential energy function
U(x) satisfying F (x) = −∇U(x)

U(x) :=
1

d − 2
lim

T→∞
[
dκd

2
T 2 −

∑
i : |zi−x|<T

1

|zi − x |d−2
] (4)

This limit unfortunately converges only for d ≥ 5 which presents
some added complications for d = 3, 4. We shall not discuss these
here.
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Picture of planar potential

Figure: The random planar potential for the Gaussian entire function (courtesy
of Manjunath Krishnapur).
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Liouville’s theorem

I Liouville’s theorem: If Γ̇x(t) = F (Γx(t)) and div(F ) = α everywhere,
then for every (bounded measurable) set A ⊆ Rd

Vol(ΓA(t)) = Vol(A)eαt

I In our case α = dκd at all points except stars. The theorem still
holds so long as A does not hit a star during its evolution up to time
t.
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Tentacle creation

2R

2r

V

Having force of order R1−γ to the right and force to the outside on edges
will cause a tentacle of length R and mass exp(−Rγ) to form. The proof
is by considering the backward flow and using Liouville’s theorem (similar
to Nazarov, Sodin and Volberg).
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Dense Galaxy Effect

2R

2C

V

U

cR           stars more 
than the

expectation

d-ɣ

8R

The Dense Galaxy Effect occurs when a region of space of radius R (say,
a ball or cylinder) has cRd−γ stars more than its expectation. Its mass is
so large that it causes massive tentacles (mass exp(−Rγ)) to be pulled
into it from far away (distance R). This is the dominant effect for d = 3
and for d = 4 and 4

3 ≤ γ ≤
3
2 .
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Wormhole Effect

2R

6a

V

U

2a

2R/3

The density of stars on the boundary of 
the cylinder U increases linearly

In high dimensions the dominant way in which long tentacles are formed

is by “Wormholes”. Long thin tubes (length R, radius R−
2−γ
d−2 ) in space

having stars on their boundary in rings of increasing intensity (density

R(2−γ) d−1
d−2 with respect to surface area). In dimension 4, a transition is

made between the Dense Galaxy Effect and the Wormhole Effect when γ
goes below 4

3 .
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