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K-wise independent events

I A vector (X1, . . . ,Xn) of random variables is called k-wise
independent if each subset of k of the variables is independent.

I We consider the case when the variables are bits, with
P(Xi = 1) = p for some 0 < p < 1.

I Define A(n, k, p) to be the set of all k-wise independent
distributions Q on n bits with Q(Xi = 1) = p for all i .

I In this work we try to understand for a given function
f : {0, 1}n → {0, 1} the quantities

max
Q∈A(n,k,p)

Q(f = 1) and min
Q∈A(n,k,p)

Q(f = 1)

Itai Benjamini, Ori Gurel-Gurevich, Ron Peled On K-wise Independent Distributions, Boolean Functions and Percolation



K-wise independent events

I A vector (X1, . . . ,Xn) of random variables is called k-wise
independent if each subset of k of the variables is independent.

I We consider the case when the variables are bits, with
P(Xi = 1) = p for some 0 < p < 1.

I Define A(n, k, p) to be the set of all k-wise independent
distributions Q on n bits with Q(Xi = 1) = p for all i .

I In this work we try to understand for a given function
f : {0, 1}n → {0, 1} the quantities

max
Q∈A(n,k,p)

Q(f = 1) and min
Q∈A(n,k,p)

Q(f = 1)

Itai Benjamini, Ori Gurel-Gurevich, Ron Peled On K-wise Independent Distributions, Boolean Functions and Percolation



K-wise independent events

I A vector (X1, . . . ,Xn) of random variables is called k-wise
independent if each subset of k of the variables is independent.

I We consider the case when the variables are bits, with
P(Xi = 1) = p for some 0 < p < 1.

I Define A(n, k, p) to be the set of all k-wise independent
distributions Q on n bits with Q(Xi = 1) = p for all i .

I In this work we try to understand for a given function
f : {0, 1}n → {0, 1} the quantities

max
Q∈A(n,k,p)

Q(f = 1) and min
Q∈A(n,k,p)

Q(f = 1)

Itai Benjamini, Ori Gurel-Gurevich, Ron Peled On K-wise Independent Distributions, Boolean Functions and Percolation



K-wise independent events

I A vector (X1, . . . ,Xn) of random variables is called k-wise
independent if each subset of k of the variables is independent.

I We consider the case when the variables are bits, with
P(Xi = 1) = p for some 0 < p < 1.

I Define A(n, k, p) to be the set of all k-wise independent
distributions Q on n bits with Q(Xi = 1) = p for all i .

I In this work we try to understand for a given function
f : {0, 1}n → {0, 1} the quantities

max
Q∈A(n,k,p)

Q(f = 1) and min
Q∈A(n,k,p)

Q(f = 1)

Itai Benjamini, Ori Gurel-Gurevich, Ron Peled On K-wise Independent Distributions, Boolean Functions and Percolation



CS background

I Concept of k-wise independent distributions is important in
computer-science where it is used, for example, for derandomization.

I Initiated by works of Luby 85,
Chor-Goldreich-Hast̊ad-Friedman-Rudich-Smolensky 85,
Karp-Wigderson 85, Alon-Babai-Itai 86
and developed further by Schulman 92, Luby 93, Koller-Megiddo 93,
Karloff-Mansour 94, Motwani-Naor-Naor 94 and others (see
Luby-Wigderson 95 for a survey).

I Related concept of almost k-wise independence is also very
important. It’s use was pioneered for derandomization purposes by
Naor-Naor 90 and developed further by
Alon-Goldreich-Håstad-Peralta 90, Azar-Motwani-Naor 90,
Alon-Bruck-Naor-Naor-Roth 92,
Even-Goldreich-Luby-Nisan-Velićković 92, Chari-Rohathi-Srinivisan
94, Alon-Goldreich-Mansour 03 and many others.

I In this work we will concentrate only on (perfectly) k-wise
independent distributions. Analogous questions can be asked for the
almost k-wise independent case but we do not address these here.
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CS background contd.

I For derandomization purposes one usually checks that a certain
randomized algorithm performs (about) the same on a particular
k-wise independent input as in the completely independent case.

I Our questions are of a similar flavor, we ask, for a given boolean
function f , how much independence is required for it to behave
(about) the same on all k-wise independent inputs (including the
completely independent one).
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Convexity

I It is easy to see that for given n, k, p, the set A(n, k, p) is convex.

I Hence to understand

max
Q∈A(n,k,p)

Q(f = 1) and min
Q∈A(n,k,p)

Q(f = 1)

it is in principle enough to understand the extremal points of
A(n, k, p). Unfortunately this appears to be very difficult and in the
sequel we shall have to resort to ad-hoc methods for each function f
we consider.

I For later reference, we identify the two extreme points of
A(n, n − 1, 1

2 ). XOR0 is the distribution on (X1, . . . ,Xn) having

{Xi}n−1
i=1 IID and Xn ≡

∑n−1
i=1 Xi mod 2, and XOR1 is the same with

Xn ≡ 1 +
∑n−1

i=1 Xi mod 2.
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Parity

I As a first example consider the parity function
Parityn : {0, 1}n → {0, 1} at p = 1

2 .
Does it necessarily behave the same on a k-wise independent input
as on a fully independent input?

I No! In a very strong sense. For any k < n, under the XOR0
distribution the probability that parity returns 1 is 0 and under the
XOR1 distribution the probability is 1.

I Hence to ensure that parity behaves normally one must take k = n!
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Basic definitions

I Let εf (k, p) := maxQ∈A(n,k,p) Q(f = 1)−minQ∈A(n,k,p) Q(f = 1).

I Define the δ-independence sensitivity of the function f at p to be

K (f , δ, p) = min(k | εf (k, p) ≤ δ)

or in words, how much independence of the input do we need to
ensure that the probability that the function is 1 is the same as the
fully independent case up to an additive error of (one half) δ.

I For simplicity, we define arbitrarily K (f , p) := K (f , 0.01, p) and call
this the independence sensitivity of the function f at p.

I We will be mostly interested in monotone functions. We recall that
a sequence fn : {0, 1}n → {0, 1} of monotone boolean functions has
a sharp threshold at p = pc if (Pp is product distribution)

lim
n→∞

Pp(fn = 1) =

{
0 p < pc

1 p > pc
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Majority

I A first non-trivial example is the majority function
Majn : {0, 1}n → {0, 1} defined for odd n.

I Majn has a sharp threshold at pc = 1
2 .

I It is easy to see that asymptotically in n, K (Majn, p) = 2 for any
p 6= 1

2 (0.01 ≤ p ≤ 0.99). Since, clearly, k = 1 is not sufficient.
However, for Q ∈ A(n, 2, p), let Sn count the number of 1’s under
Q. We have EQ(Sn) = np and VarQ(Sn) = np(1− p). If, WLOG,
p < 1/2 then by Chebyshev’s inequality

Q(Sn > n/2) ≤ Q((Sn − np) > n(1/2− p)) ≤

≤ np(1− p)

(n(1/2− p))2
= O(

1

n
) → 0

I What about p = 1
2? (can voters bias an election by using a voting

scheme which is close to fully independent? can they do it if the
scheme is only a little independent?)
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Majority contd.

I The following simple argument shows K (Majn,
1
2 ) ≤ ω(1).

I Consider the distribution of Sn under some Q ∈ A(n, k, 1/2). Let
also Sn = (Sn − n/2)/

√
n/4.

Obviously, EQ(S l
n) = EP1/2

(S l
n) for any l ≤ k. The same holds for Sn

as it is a linear function of Sn.

Therefore, EQn(Sn
l
) → sl where sl = E(N(0, 1)l) is the l-th moment

of a standard normal distribution.
The normal distribution is determined by its moments. Hence, if
k(n) ∈ ω(1) and Qn ∈ A(n, k(n), 1/2) then Sn → N(0, 1) weakly. In
particular, Qn(Majn = 1) = Qn(Sn > 0) → 1/2.
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Majority contd. II

I In fact, for Majority we know more precise results.

I Theorem
There exists a C > 0 such that for any even 2 ≤ k < n

C√
k log k

≤ max
Q∈A(n,k, 1

2 )
Q(Majn = 1)− 1

2
≤ 2

√
2√
k

And when Q0 ∈ A(n, n − 1, 1
2 ) is the XOR0 distribution we have

|Q0(Majn = 1)− 1
2 | ≥

1
3
√

n
.

I The theorem shows that K (Majn,
1
2 ) is constant for all n (which

tends to infinity with the arbitrary threshold 0.01). Voters cannot
significantly bias the election even when only finite independence is
required.

I Upper bound (with worse constant) was known in coding theory
(Sidel’nikov’s theorem, see Macwilliams and Sloane). But our proof
seems much simpler, it uses the theory of the classical moment
problem (Akhiezer 65, Krĕın-Nudel’man 77).
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Noise sensitivity

I Recall the notion of noise sensitivity of a sequence fn of boolean
functions.

The sequence is called noise sensitive if when you sample it on a
uniform input (p = 1

2 ) and when you sample it on the same input
where you flip each bit with probability ε then the outputs are
asymptotically independent (this does not depend on ε).
If the outputs are asymptotically the same the sequence is called
noise stable.

I It is well known that a sequence is noise sensitive if for any k, the
fraction of its fourier mass at frequencies of weight less than k tends
to 0.
It is noise stable if for any ε there exists k such that the fraction of
the Fourier mass below weight k is at least 1− ε.

I One may also define a quantitative version by setting KNS(f ) to be
the minimal weight such that the fraction of Fourier mass above it is
less than 0.01, say.
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Iterated majority

I Since for parity KNS = n and for Majority KNS is constant, the
previous examples may suggest that noise sensitivity and
independence sensitivity (at p = 1

2 ) are very similar, perhaps even
the same concept up to constants.

I However this is not the case!

I Consider (na, n1−a) iterated majority of height 2. That is, group the
bits to groups of size na and perform majority on each group, then
take the majority of the results. Call this function Maj2a.

I This function is noise stable for any 0 < a < 1. But we show
K (Maj2a,

1
2 ) ∼ nmin(a,1−a).

I Proof uses a theorem about independence sensitivity of compositions
of Majority with other functions.

I It utilizes the duality of the problem to the problem of approximating
the function by real polynomials.

I One of our main open questions is whether we can have
KNS(fn) = ω(K (fn,

1
2 )).
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Duality - approximation by polynomials

I For a given function f : {0, 1}n → {0, 1}, let P+
k (f ) be all real

polynomials P : Rn → R of degree at most k satisfying P(x) ≥ f (x)
on {0, 1}n.

I Similarly define P−k (f ) with P(x) ≤ f (x) on {0, 1}n.

I By linear programming duality

max
Q∈A(n,k,p)

Q(f = 1) = min
P∈P+

k (f )
EPpP(X1, . . . ,Xn)

min
Q∈A(n,k,p)

Q(f = 1) = max
P∈P−k (f )

EPpP(X1, . . . ,Xn)

I Hence for f to behave the same under all k-wise independent
distributions is equivalent to f having a ”sandwich L1”
approximation by real polynomials of degree k.
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Percolation with p = 1
3
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Percolation crossing

I Our main result is about the percolation crossing function. We
consider percolation in a finite box in d dimensions (d ≥ 2) with side
length n. Consider the function f which says if there is a crossing
from left to right. Recall that f has a sharp threshold at 0 < pc < 1.

I What is K (f , p)? for example, how much independence is needed to
have that for any p > pc the probability of crossing tends to 1 (with
n) and for any p < pc the probability of crossing tends to 0?
Is it possible that 1% of the edges are present and any 100 are
independent, yet there is a crossing with high probability?

I We find that (log n)cp/
√

log log n ≤ K (f , p) ≤ Cp log n asymptotically
for p 6= pc .

I When d > 2 we only know the upper bound for p < pc .

I A similar result holds on the d-ary tree.

I This answers a question of Benjamini, Kozma and Romik.
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2-wise percolation at p = 1
3
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2-wise percolation at p = 1
3 with box
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Orthogonal arrays

I In applications in CS, one usually generates a k-wise independent
distribution with p = 1

2 by finding a space Ω ⊆ {0, 1}n such that
sampling a uniform string from Ω one obtains a k-wise independent
distribution.

I An important question one often has to deal with is how small can
Ω be taken to be? (this is highly related to the question of how
large can a linear error correcting code with given distance be).

I What is the analogue of this question for general k-wise independent
distributions?

I Denote L := |Ω|. If we suppose WLOG that Ω contains the all zeros
string we have that the probability to sample this string is 1

L .

I Hence one analogue of the question in our case is: How high can the
probability of the all zeros string be?

I An upper bound on this quantity implies a lower bound on L, but it
is more general since it also implies a bound on the atom at the all
zeros string for any k-wise independent distribution.
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Probability of all bits 1

I Another of our main results considers the following quantity

M(n, k, p) := max
Q∈A(n,k,p)

Q(All bits are 1)

I Using the theory of the classical moment problem we show for even k

M(n, k, p) ≤ pn

P(Bin(n, 1− p) ≤ k
2 )

I Bound believed to be sharp in all ranges of the parameters.For
example, gives for k even

M(n, k, p) ≤ 2
√

k

(
kp

2e(1− p)(n − k
2 )

) k
2

≤
(

Ckp

(1− p)n

) k
2

M(n, k, p) ≤ 2pn When n(1− p) ≤ k

2

(second corollary uses a result of Jogdeo-Samuels 68).
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Probability of all bits 1 contd.

I For p = 1
2 the bound is a generalization of the bound of

Alon-Babai-Itai 86 for the minimal size of an orthogonal array of
bits. In this case we get an upper bound on the size of any atom of
the distribution (by xoring a constant string).

I For p = 1
k for an integer k, the bound is a generalization of the Rao

bound 47 for the minimal size of an orthogonal array over Zk .
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Proof of percolation theorem

I Our main lemma for the percolation result is inspired by the
(u | u + v) lemma of error-correcting codes (Macwilliams-Sloane
77). It allows to ”amplify” independence.

I Lemma
Fix m ≥ 1. Let X := (X1, . . . ,Xn) ∈ Ar (n, k). Let X i := (X i

j )
n
j=1 be m

IID copies of X . Let also Y := (Y1, . . . ,Yn) ∈ Ar (n, 2k + 1) be a vector
independent of all the X ’s. Then the vector with the following
coordinates

X 1
1 + Y1, X 1

2 + Y2, . . . , X 1
n + Yn,

X 2
1 + Y1, X 2

2 + Y2, . . . , X 2
n + Yn,

...,
...,

...,
...,

Xm
1 + Y1, Xm

2 + Y2, . . . , Xm
n + Yn

(1)

is in Ar (mn, 2k + 1)

I We also have generalizations of this lemma which we do not present
here.
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Some open questions

Open questions

I Say anything non-trivial about the extremal points of A(n, k, p).

I What is K for percolation crossing in the plane at p = pc = 1
2?

I What is K at p = 1
2 for iterated majority of height 3, for recursive

majority of 3’s?

I Can we have a boolean function whose Fourier spectrum is
concentrated on high levels, but its K at p = 1

2 is small? i.e. that
KNS(fn) = ω(K (fn,

1
2 )).

I Conjecture of Linial-Nisan 90, about the independence sensitivity at
p = 1

2 for AC0 circuits.
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