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Abstract. Expansions of the natural number ordering by unary predi-
cates are studied, using logics which in expressive power are located be-
tween first-order and monadic second-order logic. Building on the model-
theoretic composition method of Shelah, we give two characterizations
of the decidable theories of this form, in terms of effectiveness condi-
tions on two types of “homogeneous sets”. We discuss the significance of
these characterizations, show that the first-order theory of successor with
extra predicates is not covered by this approach, and indicate how anal-
ogous results are obtained in the semigroup theoretic and the automata
theoretic framework.

1 Introduction

In [1], Büchi showed that the monadic theory of the ordering (N, <) of the natural
numbers is decidable. Many authors studied the question for which expansions
of (N, <) this decidability result can be preserved. For most examples of natural
functions or binary relations it turned out that the corresponding monadic theory
is undecidable, usually shown via an interpretion of first-order arithmetic. This
applies, for instance, to the double function λx.2x ([9,20]).

For the expansion of (N, <) by unary predicates, the situation is different:
Many examples P of such predicates are known such that the monadic theory of
(N, <, P ) is decidable, among them – as shown by Elgot and Rabin [5] – the set of
factorial numbers, the set of powers of k and the set of k-th powers (for fixed k).
A larger class of such predicates was presented in [3,4]; another comprehensive
study is [11]. Contrary to the case of functions, no “natural” recursive predicate
P is known such that the monadic theory of (N, <, P ) is undecidable. Moreover,
it is known that in the cases where undecidability holds, the undecidability proof
cannot be done via an interpretation of first-order arithmetic (see [2,16]).
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The approach introduced by Elgot and Rabin [5] for showing decidability of
the monadic theory of a structure (N, <, P ) is built on a method to decompose
this structure in a “periodic” way, together with the translation of monadic
formulas to Büchi automata. By this translation, the monadic theory of (N, <
, P ) is decidable iff the following decision problem AccuP is decidable for the
characteristic ω-word uP associated with P (where uP (i) = 1 if i ∈ P and
otherwise uP (i) = 0):

(AccuP ): Given a Büchi automaton A, does A accept uP ?

Considering the predicate F of factorial numbers as an example, Elgot and Rabin
defined for a given Büchi automaton A a “contraction” c(uF ) of uF which is
accepted by A iff uF is accepted by A. The contraction cA(uF ) is obtained
from uP by applying a pumping argument to the 0-segments between successive
letters 1. The word cA(uF ) has 0-segments of bounded length and turns out to be
ultimately periodic; so one can decide whether A accepts cA(uF ) and hence uF .
Also the method of [3,4] follows this pattern: Decidability of AccuP is reduced to
the question whether, given a finite semigroup (replacing the Büchi automaton
as used by Elgot and Rabin), one can compute a representation of an ultimately
periodic word which can replace uP for answering the question about uP . An
abstract version of this “effective reduction to ultimately periodic predicates”
is given in our main theorem below. As a key tool we use Ramsey’s Theorem
on the existence of homogeneous sets over colored orderings of order type ω (as
already Büchi did in [1]).

In [8] this “non-uniform” procedure of reducing uP to ultimately periodic
sequences, depending on the monadic formula, the Büchi automaton, or the
semigroup under consideration, was replaced by a “uniform” periodicity condi-
tion on P , thus settling a conjecture raised in [4]. The main result of [8] states
that the monadic theory of (N, <, P ) is decidable iff a recursive predicate P ′

exists which is “homogeneous for P”. This predicate captures, in some sense,
all the ultimately periodic structures that arise from the non-uniform approach
mentioned above.

The purpose of the present paper is to give a streamlined proof of the result
of [8], clarifying the connection to the “non-uniform” method, and at the same
time generalizing it from monadic logic to a class of logics between first-order
logic and monadic logic. We also discuss the case where the successor relation S
is considered instead of the ordering < (a modification which is irrelevant when
monadic logic is considered). As in [8], we present the proofs in a logical frame-
work, avoiding the use of automata or semigroups, and building on composition
theorems in the spirit of Shelah [12] (see also [6,18]). As explained in Section 4.3,
however, the arguments do not depend on this framework and can be transferred
easily to the domains of automata, respectively semigroups.

The present work represents a merge of ideas of the two independently written
and so far unpublished papers [8,15] (of 2005 and 1975, respectively).

In the subsequent section we introduce the background theory and state the
main result. Section 3 is devoted to the proof. In Section 4, we discuss several
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aspects of the main theorem: its significance, its failure for the first-order theory
of successor, and the alternative frameworks of semigroups and automata in
place of logic. A summary and outlook conclude the paper.

2 Logical Background and Main Result

The structures considered in this paper are of the form M = (N, <, P1, . . . , Pm)
with Pi ⊆ N. We call them m-labelled ω-chains. These structures are in one-
to-one correspondence with ω-words over the alphabet {0, 1}m. The ω-word
uP = uP (0)uP (1) . . . corresponding to P = (P1, . . . , Pm) has value 1 in the
j-th component of uP (i) iff i ∈ Pj . By an m-labelled chain we mean a linear
ordering (A,<, P1, . . . , Pm) with finite A or A = N.

Let us recall some standard logical systems; here we assume that the signature
is chosen according to the type of structure above (and in our notation we do
not distinguish, for example, between the relation < and the relation symbol
denoting it). The system of first-order logic FO[<] has, besides equality, the
mentioned relation symbols <,P1, . . . , Pm. The atomic formulas are of the form
x = y, x < y, Pi(x) with first order variables x, y. Formulas are built up using
boolean connectives and the first-order quantifiers ∃, ∀. In the first-order logic
FO[S], the successor relation S is used in place of <.

It is known that over labelled chains one can increase the expressive power
of first-order logic by adjoining “modular counting quantifiers” ∃r,q (with 0 ≤
r < q), where ∃r,qxϕ(x) means that the number of elements x satisfying ϕ is
finite and equal to r modulo q. We denote this logic by FO[<]+MOD. A detailed
introduction is given in [13].

Still more expressive are the logical systems MSO of monadic second-order
logic and WMSO of weak monadic second-order logic. They arise from FO[<] by
adding unary second-order variablesX,Y, . . . and corresponding atomic formulas
(written X(y) etc.). In MSO, quantification over set variables ranges over the
subsets of N, in WMSO only over the finite subsets of N. Over labelled ω-
orderings, WMSO and MSO have the same expressive power, which however
exceeds that of FO[<]+MOD (cf. [17,13]).

In the sequel the letter L stands for any of the logics introduced above. The
L-theory of (N, <, P ) is the set of L-sentences which are true in (N, <, P ).

For the analysis of the L-theory of (N, <, P ) we use the composition method
which was developed by Shelah [12] for monadic second-order logic. We recall
the facts underlying the composition method.

Two m-labelled chains M,M ′ are called k-equivalent for L (written: M ≡L
k

M ′) if M |= ϕ ⇔ M ′ |= ϕ for every L-sentence ϕ of quantifier depth k. This
is an equivalence relation between labelled chains; its equivalence classes are
called k-types for L (and for the given signature with < and m unary predicate
symbols). Let us list some fundamental and well-known properties of k-types for
any of the logics L above; here we suppress the reference to L for simplicity of
notation.
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Proposition 1. 1. For every m and k there are only finitely k-types of m-
labelled chains. (In the case of FO[<]+MOD, we assume that also a maximal
divisor q is fixed in advance.)

2. For each k-type t there is a sentence (called ”characteristic sentence”) which
defines t (i.e., is satisfied by a labelled m-chain iff it belongs to t). For given
k and m, a finite list of characteristic sentences for all the possible k-types
can be computed. (We take the characteristic sentences as the canonical rep-
resentations of k-types. Thus, for example, transforming a type into another
type means to transform sentences.)

3. Each sentence ϕ is equivalent to a (finite) disjunction of characteristic sen-
tences; moreover, this disjunction can be computed from ϕ.

The proofs of these facts can be found in several sources, we mention [12,18,19]
for MSO and FO, and [13] for FO[<]+MOD.

As a simple consequence we note that the L-theory of an m-labelled chain M
is decidable iff the function which associates to each k the k-type of M for L is
computable.

Given m-labelled chains M0,M1 we write M0 + M1 for their concatenation
(ordered sum). In our context, M0 will always be finite and M1 finite or of order
type ω. Similarly, if for i ≥ 0 the chainMi is finite, the model Σi∈NMi is obtained
by the concatenation of all Mi in the order given by the index structure (N, <).

We need the following composition theorem on ordered sums:

Theorem 2 (Composition Theorem). Let L be any of the logics considered
above.

(a) The k-types of m-labelled chains M0,M1 for L determine the k-type of the
ordered sum M0 + M1 for L, which moreover can be computed from the k-
types of M0,M1.

(b) If the m-labelled chains M0,M1, . . . all have the same k-type for L, then this
k-type determines the k-type of Σi∈NMi, which moreover can be computed
from the k-type of M0.

Part (a) of the theorem justifies the notation s+ t for the k-type of an m-chain
which is the sum of two m-chains of k-types s and t, respectively. Similarly, we
write t ∗ ω for the k-type of a sum Σi∈NMi where all Mi are of k-type t.

Let us call a logic L compositional if the Composition Theorem above with
parts (a) and (b) holds. All logics L listed above are compositional. For FO[<]
and WMSO this goes back to Läuchli, for MSO to Shelah [12], and for FO[S]
and FO[<]+MOD one may consult [13].

The fundamental fact which enters all decidability proofs below (and which
underlies also Büchi’s work [1]) is the following: The two parts (a) and (b)
of the Composition Theorem suffice to generate the k-types of arbitrary (even
non-periodic) m-labelled chains M = (N, <, P1, . . . , Pm). This is verified by de-
composing M into segments such that all of them except possibly the first one
have the same k-type. The elements (numbers) that separate the segments of
such a decomposition form a “homogeneous set”. Given M = (N, <, P ), let us
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write M [i, j) for the m-labelled chain with domain [i, j) = {i, . . . , j− 1} and the
predicates < and P restricted to [i, j).

Definition 3 (k-homogeneous set). A set H = {h0 < h1 < . . .} is called
k-homogeneous for M = (N, <, P ) with respect to L, if all segment models
M [hi, hj) for i < j (and hence all segment models M [hi, hi+1) for i ≥ 0) have
the same k-type for L.

In the main theorem below, a stronger notion of homogeneity [8] enters:

Definition 4 (uniformly homogeneous set). A set H = {h0 < h1 < . . .} is
called uniformly homogeneous for M = (N, <, P ) with respect to L if for each k
the set Hk = {hk < hk+1 < . . .} is k-homogeneous with respect to L.

The existence of uniformly homogeneous sets will be shown in the next section,
while the existence of k-homogeneous sets is well-known (see e.g. [17]):

Proposition 5 (Ramsey). Let f be a function from N
2 into a finite set C.

Then there is c ∈ C and an infinite set H such that f(i, j) = c for all i < j ∈ H.
In particular, if L is a logic satisfying item 1 of Proposition 1, and M an

m-labelled ω-chain, there is a k-homogeneous set for M with respect to L.

Given a k-homogeneous set H = {h0 < h1 < . . .} for M = (N, <, P ) with respect
to L, the Composition Theorem implies that the k-type for L of M = (N, <, P )
can be computed from the k-types for L of M [0, h0) and of M [h0, h1); note that
all the segment models M [hi, hi+1) have the same k-type for L.

For two k-types s, t (for L) of m-labelled chains consider the following
condition:

HomL
s,t:

There is a k-homogeneous set H = {h0 < h1 < . . .} with respect to L such
that M [0, h0) has k-type s and M [h0, h1) has k-type t for L.

If HomL
s,t is true in M = (N, <, P ), the k-type of M = (N, <, P ) for L is com-

putable as the type s + t ∗ ω. Thus, Ramsey’s Theorem reduces the decision
problem for the L-theory of M = (N, <, P ) to the problem of deciding, for each
k and k-types s, t, whether the statement HomL

s,t holds in M . Ramsey’s Theorem
guarantees that for given M and k such a pair (s, t) of k-types exist.

For an m-labelled ω-chainM , let RecRamseyL(M) be the following condition:

RecRamseyL(M):
There is a recursive function assigning to each k a pair of k-types s and t
for L such that HomL

s,t holds in M .

We call the logic L expressive for the existence of homogeneous sets if for any
k-types s, t for L, there is an L-sentence which expresses HomL

s,t.
We can now state our main result.

Theorem 6. Let L be a logic which is both compositional and expressive for the
existence of homogeneous sets. Then the following are equivalent for any given
m-labelled ω-chain M = (N, <, P ) with recursive sets P :
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1. The L-theory of M is decidable.
2. RecRamseyL(M).
3. There is a recursive uniformly homogeneous set for M with respect to L.

Let us verify that the theorem covers all the logics L mentioned above, excepting
FO[S]. For this it remains to show that FO[<], FO[<]+MOD, WMSO, MSO are
expressive for the existence of homogeneous sets.

This is obvious for MSO; in a straightforward formalization of HomL
s,t one

uses an existential set quantifier ∃X and relativizes the characteristic sentences
for s and t to the segments from 0 to the first element of X , respectively to the
segments enclosed by successive X-elements. For the remaining logics it suffices
to show the following (see e.g. [17]).

Proposition 7. FO[<] is expressive for the existence of homogeneous sets.

Proof. We write Tk[x, y) = t for a formula expressing that the k-type of the
segment [x, y) (for FO[<]) is t. The proof covers all logics L considered here
which extend FO[<]; in our notation we suppress the reference to FO[<] or to
such L. Note that Homs,t can only hold for a k-type t with t = t+ t. We show
that Homs,t holds iff

∃x(Tk[0, x) = s ∧ ∀y ∃zz′ ( y < z < z′ ∧ Tk[x, z) = t ∧ Tk[z, z′) = t )

The direction from left to right is trivial; take, e.g., for x the minimal element
of the homogeneous set given by the assumption.

For the direction from right to left choose a number x as given by the formula,
and apply its latter clause by choosing a sequence of numbers z1 < z′1 < z2 <
z′2 < . . . such that Tk[x, zi) = Tk[zi, z

′
i) = t and hence (note that t + t = t)

Tk[x, z′i) = t. We shall find a subsequence z1 < zi1 < zi2 . . .of z1 < z2 < . . . such
that Tk[x, zim) = Tk[zim , zin) = t for all m < n ∈ N.

Define a coloring col from N
2 to the set Tk of all k-types as follows: col(i, j) =

Tk[z′i, zj). By Ramsey’s theorem there is t1 ∈ Tk and an infinite set i1 < i2 . . .
such that col(im, in) = t1 for all m < n. Note that for m < n ∈ N:

t = Tk[x, zin) = Tk[x, z′im
) + Tk[z′im

, zin) = t+ t1

Hence,

Tk[zim , zin) = Tk[zim , z
′
im

) + Tk[z′im
, zin) = t+ col(im, in) = t+ t1 = t.

�

Let us address the relation of Theorem 6 to the main result of [8]. It is shown
there that the following conditions are equivalent:

1. The monadic (second-order) theory of M = (N, <, P ) is decidable.
2. There is a recursive uniformly homogeneous set for M with respect to the

monadic (second-order) logic.
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The proof of the implication (1)⇒(2) in [8] relies on the expressive power of MSO-
logic and proceeds as follows. For k = 1, 2, . . . an MSO-formula Hk(X,Y, P )
is constructed (effectively from k and the number of predicates in P ) which
defines for any infinite subset Y of M = (N, <, P ) an infinite set X ⊆ Y which
is k-homogeneous for M . (The uniqueness proof for X requires a nontrivial
uniformization result, using [7].) Hence, the set Q1 such that M |= H1(Q1,N, P )
is 1-homogeneous for M , and more generally the set Qk+1 such that M |=
Hk+1(Qk+1, Qk, P ) is (k + 1)-homogeneous for M . The sets Q1 ⊇ Q2 ⊇ . . . are
definable by formulas and therefore are recursive (in the monadic theory of M).
Hence, the set H = {ak : ak is k-th element of Qk} is recursive and uniformly
homogeneous for M .

In the present paper, the proof of Theorem 6 relates the conditions of non-
uniform and uniform homogeneity in a direct way, covers more logics (between
FO[<] and MSO) than MSO, and is somewhat simpler since it does not involve
the uniformization result of [7].

3 Proof of Theorem 6

For the conditions

(1) The L-theory of M is decidable
(2) RecRamseyL(M)
(3) There is a recursive uniformly homogeneous set for M with respect to L

we show the implication chain (3) ⇒ (2) ⇒ (1) ⇒ (3).

(3)⇒(2). Assume that H = {h0 < h1 < . . .} is recursive and uniformly homo-
geneous for M with respect to L.

Let k be a natural number. If s is the k-type of M [0, hk) and t is the k-type of
M [hk, hk+1) then M |= HomL

s,t. Let ti be the k-type of one element chainM [i, i].
Note that ti is computable because M is recursive. The k-type of M [0, hk) is
s =

∑i=hk−1
i=0 ti and the k type of t = M [hk, hk+1) is

∑i=hk+1−1
i=hk

ti. These sums
are computable from the Composition Theorem.

(2)⇒(1). Let ψ be a sentence. In order to check whether ψ holds in M we
proceed as follows:

1. Let k be the quantifier depth of ψ.
2. By RecRamseyL(M) we can compute k-types s and t for L such that M |=
HomL

s,t.
3. Hence, the k-type t1 of M can be computed as t1 = s+ t ∗ ω.
4. In order to check whether t1 → ψ is valid, we can compute a finite disjunction

of k-characteristic sentences which is equivalent to ψ, and note that t1 → ψ
holds iff t1 is one of these disjuncts.

5. Finally, t1 → ψ iff ψ holds in M .

(1)⇒(3) Assume that the L-theory of M is decidable. We present an algorithm
which enumerates in increasing order the numbers of a recursive homogeneous
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set H = {n1 < n2 < n3 < . . .} for M . We use TL
k for the (finite) set of k-types

of the language L.

Algorithm

Basis

1. Find t1, s1 ∈ TL
1 such that t1 = t1 + t1 and M |= HomL

s1,t1 . Note that
such s1 and t1 exist by the Ramsey Theorem. Moreover, there is an
algorithm to find s1 and t1, because of finiteness of TL

1 , the assumption
that HomL

s1,t1 is expressible in L, and decidability of the L-theory of M .
2. Let n1 be the minimal n such that

s1 is the 1-type of M [0, n) and (1)

M [n,∞) |= HomL
t1,t1 (2)

This number n1 can be computed as follows. Let αs(v) be a formula
which expresses Tk[0, v) = s, and let βt(v) be a formula obtained from the
sentence Homt,t by relativizing all quantifiers to the interval [v,∞). It
is clear that n1 defined above is the unique natural number that satisfies

γ(v) =def αs1(v) ∧ βt1(v) ∧ ∀u((0 < u < v) → ¬(αs1 (u) ∧ βt1(u))).

From the fact that the L theory of M is decidable and that every natural
number n is defined by an L formula ψn(v) (computable from n) we
can compute this n1 by finding the minimal number n such that M |=
∃v(ψn(v) ∧ γ(v)

)
.

Inductive step k �→ k + 1

1. Find tk+1, sk+1 ∈ TL
k+1 such that tk+1 → tk and sk+1 → tk are valid

and tk+1 = tk+1 + tk+1 and M [nk,∞) |= HomL
sk+1,tk+1

. The arguments
similar to the arguments in the step 1 of the basis show that tk+1, sk+1

are computable.
2. Let nk+1 be the minimal n > nk such that

sk+1 is the k+1 type of M [nk, n) and (3)

M [n,∞) |= HomL
tk+1,tk+1

(4)

The arguments similar to the arguments in the step 2 of the basis show
that tk+1, sk+1 and nk+1 are computable.

It is clear that the set H = {n1 < n2 < . . .} generated by our algorithm is
recursive. We show that it is uniformly homogeneous:

By our construction for every k the k-type of M [nk, nk+1) is tk.
Since si → tk and ti → tk for i > k we obtain that the k-type of M [ni, ni+1)

is also tk for all i > k. Since tk + tk = tk, we obtain that the k type of M [ni, nj)
is also tk for all j > i > k. This proves the uniform homogeneity of H .
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4 Discussion

4.1 Comments on Uniform Homogeneity

The main theorem provides two reductions of the decision problem for the L-
theory of a structure M = (N, <, P ): With the first reduction one can transform
the question “Is the sentence ϕ true in M?” to a problem to determine a decom-
position of M into a sequence of segments, which depends only on the complexity
k of ϕ. This decomposition gives two L-types sk and tk from which one can infer
by a an algorithmic procedure whether ϕ is implied. The decision problem for the
L-theory of M is thus reduced to the question whether the function k �→ sk, tk
is recursive.

The second reduction captures this recursiveness by the recursiveness of a sin-
gle decomposition of M into segments. This single decomposition results from an
infinite refinement process of the types sk, tk mentioned above, and correspond-
ingly it leads to a sequence of decomposition segments which satisfy k-types for
larger and larger k.

In a more general formulation on the existence of uniformly homogeneous
sets we can cover arbitrary unary predicates P rather than just recursive ones.
Consider an m-chain M = (N, <, P ). Note that the Algorithm of Section 3 is
effective when given an oracle which can supply the truth value of any condition
HomL

s,t. So we obtain the following result from the proof of the Theorem 6:

Theorem 8. Let L be compositional and expressive.

1. For each structure M = (N, <, P ) there is a uniformly homogeneous set H
which is recursive in the L-theory of M .

2. For each structureM = (N, <, P ) and each uniformly homogeneous set H for
M , the L-theory of M is recursive in the recursion theoretic join of (P ,H).

We can refine this result by a bound on the recursion theoretic complexity of H
relative to P . By Proposition 7, HomL

s,t is a Σ0
3 statement over the recursion-

theoretic join of the predicates in P , which implies that HomL
s,t is recursive

in P
′′′

, the third jump of the recursion-theoretic join of the predicates in P .
(For recursion theoretic terminology see [10].) Thus in the first part of Theorem
8, H can be chosen to be recursive in P

′′′
. As shown in [2,17], the quantifier

structure of the formula that expresses HomL
s,t can be simplified even to a boolean

combination of Σ0
2 -formulas. So the recursion theoretic bound on H can be

sharpened to “truth-table reducible to P
′′
”. By [16] this is optimal in the sense

that bounded truth-table reducibility does not suffice.
While our main theorem provides two characterizations of the decidable L-

theories of structures (N, <, P ), it is not easily applicable in order to find interest-
ing predicates P such that, say, the first-order or the monadic second-order the-
ory of (N, <, P ) is decidable. Let us first compare the condition RecRamseyL(M)
with the classical method of Elgot and Rabin [5], taking the factorial predicate
F as an example. Elgot and Rabin proposed a deterministic procedure to trans-
form F into an ultimately periodic predicate, depending on the given formula
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(or automaton). The condition RecRamseyL(M) only involves the existence of a
procedure and does not provide one in concrete examples. However, the decom-
position ensured by RecRamseyL(M) is “stronger” in the sense that it provides
an ultimately constant (and not just periodic) sequence of types.

The uniformly homogeneous sets given by the third clause of the theorem also
do not settle (immediately) the decision problem for concrete theories of struc-
tures (N, <, P ). A prominent example is the predicate P of the prime numbers.
The open twin prime hypothesis is easily expressible already in FO[<] (we use
here for simplicity also the successor relation S, which is definable in FO[<]):

ϕ0 := ∀x∃y0∃y1∃y2(x < y0 ∧ P(y0) ∧ S(y0, y1) ∧ S(y1, y2) ∧ P(y2))

Now k = 5 is the quantifier depth of an FO[<]-sentence which avoids this ab-
breviation with S. Taking the uniformly homogeneous set H for P with respect
to FO[<], one could decide ϕ0 by inspecting the segment from the 5-th to the
6-th element of H : There are infinitely many twin primes iff a pair of primes of
distance 2 occurs in this segment; otherwise all twin primes would be included
in the initial segment before. It is clear that H encodes this information not only
about the twin primes but all other conceivable configurations of primes that are
MSO-definable, for instance patterns within segments of some bounded length.
Thus H encodes a lot of known and unknown number theory.

4.2 The Successor Theory

In the main result Theorem 6 we excluded the logic FO[S]. For example, the
proof of Proposition 7, which shows that FO[<] is expressive for the existence of
homogeneous sets, uses the < relation in an essential way. Indeed, we can show
that the main theorem fails for FO[S].

It turns out that a recursive uniformly homogeneous set H encodes more
information than needed for deciding FO[S]-sentences. While H supplies infor-
mation about the infinite occurrence of certain segment types, FO[S]-sentences
can only express such occurrences in numbers up to a certain finite bound. In-
deed, it is well-known that the FO-theory of M = (N, S, P ) is decidable iff for
each isomorphism type τ of finite segments and each m, one can decide whether
τ occurs ≥ m times in M (see, e.g., [16,19]).

Theorem 9. There is a recursive predicate P such that the FO-theory of (N, S,
P ) is decidable but there is no recursive uniformly homogeneous set for (N, S, P ).

Proof. We use a predicate P , presented in [16], for which the FO-theory of
(N, S, P ) is decidable whereas the FO-theory of (N, <, P ) is undecidable.

Suppose P is a procedure which runs through all pairs (i, j) of natural numbers
in some order; we write (in, jn) for the n-th pair in this order. P generates a bit
sequence as follows: When treating (in, jn), it checks whether the in-th Turing
machine runs for at least jn steps when started on the empty tape. P outputs
10n10in in this case, and otherwise generates just 10n. The resulting bit sequence
u is obtained as the concatenation of the P-outputs. Clearly u is recursive, and
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it has the property that for each given w ∈ {0, 1}∗ and threshold number m
one can decide whether w occurs m times in u. (To verify this, note that by
construction of u, the only segment types that occur infinitely often are in the
languages 0∗, 0∗10∗, and, for certain values of i, 0∗10i10∗. To test whether a
segment of the latter type occurs m times, check the output of procedure P up
to the m-th treatment of Turing machine Mi.) From this fact one infers that the
first-order theory of (N, S, P ) is decidable (cf. [16]).

By construction of u, the i-th Turing machine does not halt on the empty
tape iff the segment 10i1 occurs infinitely often in u. We show that the latter
can be decided if there is a recursive uniformly homogeneous set H for (N, S, P ).

Let H = {h0 < h1 < . . .} be a recursive uniformly homogeneous set for
(N, S, P ). Given i choose k large enough such that from a k-type of a 1-labelled
chain one can infer whether the following holds:

(∗) there is a sequence of i + 2 successive elements such that its first
and last element are in P but the others are not.

Consider the segment M [hk, hk+1), which can be obtained effectively by recur-
siveness of H . M [hk, hk+1) satisfies (∗) iff 10i1 occurs infinitely often in u. �

4.3 Algebraic and Automata Theoretic Types

In this section we discuss alternative ways of introducing “k-types”, using semi-
groups or automata rather than formulas to describe properties of words. When
referring to a logic L, we assume that it is compositional and expressive for the
existence of homogeneous sets.

Recall that for such a logic L, for each k the set TL
k of k-types of L with the +

operation is a finite semigroup. Let SL be the family of finite semigroups defined
as follows:

S ∈ SL iff there is k ∈ N and a semigroup homomorphism from T k
L onto S

Note that SWMSO = SMSO is the family of all finite semigroups and that SFO

is the family of finite aperiodic semigroups.
Let S be a family of finite semigroups. Define an equivalence relation ∼S

k on
Σ+ as follows:

w1 ∼S
k w2 iff h(w1) = h(w2) for every S ∈ S of size at most k and for

every morphism h : Σ+ → S.

The following lemma is technical but straightfoward.

Lemma 10. 1. For every k ∈ N there is m ∈ N computable from k such that
if w1 ∼SL

m w2 then w1 ≡L
k w2.

2. For every m ∈ N there is k ∈ N computable from m such that if w1 ≡L
k w2

then w1 ∼SL
m w2.

As representations of such semigroups one may take the transformation semi-
groups of finite automata extended by information about visited states. Then
the parameter k can be set to be the cardinality of automata rather than of
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semigroups. Formally, one refers to a class A of finite automata and uses the
congruences ∼A

k over Σ+ defined as follows: For w1, w2 ∈ Σ+, define w1 ∼A
k w2

iff for any automaton A ∈ A with k states, any states p, q of A and any set P of
states of A, there is a run of A on w1 from p to q with states forming the set P
iff this holds for w2.

Definition 11. An ω-word u is effectively homogeneous for a family S of finite
semigroups if there is a recursive ω-sequence w1, w2, . . . of finite words such that
u = w1w2 . . . and for every k ∈ N and semigroup S ∈ S of size at most k and
morphism h : Σ+ → S there is s ∈ S such that h(wi) = s for all i > k.

The following theorem is an immediate corollary of Theorem 6 and Lemma 10.

Theorem 12. Let L be a logic which is both compositional and expressive for
the existence of homogeneous sets. The L-theory of an ω-word u is decidable iff
u is effectively homogeneous for SL.

Hence we have

Corollary 13. The FO-theory of an ω-word u is decidable iff u is effectively
homogeneous for the family of finite aperiodic semigroups. The WMSO-theory
and the MSO-theory of an ω-word u is decidable iff u is effectively homogeneous
for the family of finite semigroups.

5 Conclusion

We analyzed, for some natural logics L including first-order and monadic second-
order logic, the decision problem for the L-theories of structures M = (N, <, P )
where P is a tuple of unary predicates. Our main result gave two characteri-
zations of the decidable theories of this form, using recursiveness conditions on
two different versions of “homogeneous sets”.

As already mentioned, it seems hard to apply the main theorem of this paper
as a tool to find new predicates P where, say, the monadic-second theory of
(N, <, P ) is decidable, or to establish even an interesting predicate where this
theory is undecidable.

Another kind of application, left open in this paper, is the generation of con-
crete classes of predicates P (by certain closure properties) such that say the
MSO theory of (N, <, P ) is decidable. This kind of application would yield de-
cidability results via the transformation of uniformly homogeneous sets.
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