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Abstract. Many protocols are designed to operate correctly even in the
case where the underlying communication medium is faulty. To capture
the behavior of such protocols, Lossy Channel Systems (LCS’s) have
been proposed. In an LCS the communication channels are modeled as
unbounded FIFO buffers which are unreliable in the sense that they can
nondeterministically lose messages.

Recently, several attempts have been made to study Probabilistic Lossy
Channel Systems (PLCS’s) in which the probability of losing messages is
taken into account. In this article, we consider a variant of PLCS’s which
is more realistic than those studied previously. More precisely, we assume
that during each step in the execution of the system, each message may be
lost with a certain predefined probability. We show that for such systems
the following model checking problem is decidable: to verify whether a
linear-time property definable by a finite state w-automaton holds with
probability one. We also consider other types of faulty behavior, such as
corruption and duplication of messages, and insertion of new messages,
and show that the decidability results extend to these models.

1 Introduction

Finite state machines which communicate asynchronously through
unbounded buffers have been popular in the modeling of communi-
cation protocols [Boc78,BZ83]. One disadvantage with such a model
is that it has the full computation power of Turing machines [BZ83],
implying undecidability of all nontrivial verification problems. On
the other hand, many protocols are designed to operate correctly
even in the case where the underlying communication medium is
faulty. To capture the behavior of such protocols, lossy channel sys-
tems (LCS’s) [AJ96b,CFP96] have been proposed as an alterna-
tive model. In an LCS the communication channels are modeled as

* This article is based on [AR03] and [BSO03].
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FIFO buffers which are unbounded but also unreliable in the sense
that they can nondeterministically lose messages. For LCS’s it has
been shown that the reachability problem is decidable [AJ96b] while
progress properties are undecidable [AJ96a).

Since we are dealing with unreliable communication media, it is
natural to consider models where the probability of errors is taken
into account. Recently, several attempts [PN97,BE99,ABPJ00] have
been made to study Probabilistic Lossy Channel Systems (PLCS’s)
which introduce randomization into the behavior of LCS’s. The de-
cidability of model checking for the proposed models depend heavily
on the semantics provided. The works in [BE99,ABPJ00] define dif-
ferent semantics for PLCS’s depending on the manner in which the
messages may be lost inside the channels.

Baier and Engelen [BE99] consider a model where it is assumed
that at most one single message may be lost during each step of
the execution of the system. They show decidability of model check-
ing under the assumption that the probability of losing messages
is at least 0.5. This implies that, along each computation of the
system, there are almost surely infinitely many points where the
channels of the system are empty, and therefore the model checking
problem reduces to checking decidable properties of the underlying
(non-probabilistic) LCS.

The model in [ABPJ00] assumes that messages can only be lost
during send operations. Once a message is successfully sent to a
channel, it continues to reside inside the channel until it is removed
by a receive operation. Both the reachability and repeated reachabil-
ity problems are shown to be undecidable for this model of PLCS’s.
The idea of the proof is to choose sufficiently low probabilities for
message losses to enable the system to simulate the behavior of (non-
probabilistic) systems with perfect channels.

In this article, we consider a variant of PLCS’s which are more
realistic than that in [BE99,ABPJ00]. More precisely, we assume
that, during each step in the execution of the system, each message
may be lost with a certain predefined probability. This means that
the probability of losing a certain message will not decrease with
the length of the channels (as it is the case with [BE99]). As a con-
sequence, and in contrast to [BE99], our method is not dependent
on the precise transition probabilities for establishing the qualita-
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tive properties of the system. For this model, we show decidability
of both the reachability and repeated reachability problems.

The decidability results are achieved in two steps. First, we prove
general theorems about (infinite-state) Markov chains which serve as
sufficient conditions for decidability of model checking *. To do that,
we introduce the concept of attractor sets: all computations of the
system eventually visit the attractor almost surely. The existence
of finite attractors imply that deciding reachability and repeated
reachability in the PLCS can be reduced to checking reachability
problems in the underlying LCS. Next, we show that all PLCS’s,
when interpreted according to our semantics, have finite attractors.
More precisely, we prove the existence of an attractor defined as
the set of all configurations where the channels are empty. In fact,
the systems considered in [BE99] have the same attractor (when
the probability of losing messages is at least 0.5), and therefore the
decidability results in [BE99] can be seen as a consequence of the
properties we show for attractors.

We also show that our decidability results extend to PLCS’s with
different sources of unreliability, such as duplication, corruption, and
insertion combined with lossiness [CFP96]. Furthermore, we extend
our decidability results to more general properties specified by finite
state automata or equivalently by formulas of the monadic logic of
order.

QOutline. In the next two Sections we recall basic notions on transi-
tion systems and Markov chains respectively, and we introduce the
concept of attractors. In Section 4 we present sufficient conditions for
checking reachability and repeated reachability for Markov chains.
In Section 5 we extract from these conditions algorithms for PLCS’s.
In Section 6 we consider models involving different sources of unreli-
ability combined with lossiness. In Section 7 we generalize our results
to the verification of properties definable by the w-behavior of finite
state automata (or equivalently by formulas in the monadic logic of
order). Finally, we give conclusions and directions for future work in
Section 8.

4 Existing works on the verification of infinite-state Markov chains, e.g. the proba-
bilistic pushdown automata considered in [EKMO04], rely on other methods.
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2 Transition Systems

In this section, we recall some basic concepts of transition systems.

A transition system T is a pair (S, —) where S is a (potentially)
infinite set of states, and — is a binary relation on S. We write
s; — sy to denote that (s;,sy) €— and use — and % to denote
the reflexive transitive (resp. transitive) closure of —. We say that
sy is reachable from sy if s; — s5. For sets Q1, Qs C S, we say that
Qs is reachable from Q;, denoted Q7 = Qs if there are s; € @
and sy € (J with s; 559 A path p from s to s’ is of the form
S9 — 81 — -+ — 8, where s = s and s, = §’. For aset Q C S, we
say that p reaches Q if s; € () for some i : 0 <7 <n.For @Q,Q> C S,
we define the set Until(Q1, Q2) to be the set of all states sy such that
there is a path sg — s; — .-+ — s, from sq satisfying the following
property: there is an ¢ : 0 < ¢ < n such that s; € Q)3 and for each
J:0<7 <iwehave s; € Q.

For Q C S, we define the graph of @), denoted Graph(Q), to be
the subgraph of (.S, i>) induced by @, that is, the transition system
(Q,—") where s; —' sy iff 54 F sy

A strongly connected component (SCC) in T is a maximal set
C C S such that s; — sy for each sy, s, € C. We say that C is a
bottom SCC (BSCC) if there is no other SCC C’ in T with C' = C".
In other words, the BSCCs are the leafs in the acyclic graph of SCCs
(ordered by reachability).

We shall later refer to the following two problems for transition
systems:

Reachability
Instance: A transition system 7' = (S, —), and sets Q1,2 C S.
Question: Is (), reachable from )17

Constrained Reachability

Instance: A transition system 7" = (S, —), a state s, and sets

Q1,Q2 € 5.
Question: Is s € Until(Q1, Q2)?
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3 Markov Chains and Their Attractors

In this section, we recall some basic concepts of Markov chains and
introduce attractors which will later play a key role in our analysis.

A Markov chain M is a pair (S, P) where S is a countable (pos-
sibly infinite) set of states and P is a mapping from S x S to the
real interval [0,1], such that ), o P(s,s") = 1, for each s € S. A
computation m (from sg) of M is an infinite sequence sg, sy, ... of
states. We use 7(7) to denote s;.

A Markov chain induces a transition system, where the transition
relation consists of pairs of states related by strictly positive prob-
abilities. Formally, the underlying transition system of M is (S, —)
where s; — sy iff P(s1,82) > 0. In this manner, the concepts defined
for transition systems can be lifted to Markov chains. For instance,
an SCC in M is an SCC in the underlying transition system.

A Markov chain (S, P) induces a natural measure on the set of
computations from every state s (see e.g. [KSK66] or [Pan01]).

Let us recall some basic notions from probability theory.

A measurable space is a pair ({2, A) consisting of a non empty
set (2 and a c-algebra A of its subsets that are called measurable
sets and represent random events in some probability context. A o-
algebra over {2 contains (2 and is closed under complementation and
countable union. Adding to a measurable space a probability measure
P: A — [0,1] that is countably additive and such that P(£2) = 1,
we get a probability space (£2, A, P).

Consider a state s of a Markov chain (S, P). Over the set of
computations that start at s, the probabilistic space (£2,A,P) is
defined as follows:

— (2 = s5% is the set of all infinite sequences of states starting from
87

— A is the o-algebra generated by the basic cylindric sets D, =
uS*, for every u € sS*,

— P, the probability measure, is defined by P(D,,) = [[y<ic,, P(Si; Si+1)
where u = s¢$7...5,; it is well-known that this measure is extended
in a unique way to the elements of the o-algebra generated by
the basic cylindric sets.
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Let @ C S be a set of states. Using standard temporal logic no-
tations, we write 7 = OQ to denote that 7 visits @ (i.e. w(i) € @
for some i € N) and 7 | OCQ to denote that 7 visits () infinitely
many times (i.e. 7(i) € @ for infinitely many ¢ € N). For singleton
sets, we shortly write, e.g., “Csy” instead of “O{s}”.

It is well-known (and easily seen) that the set of executions in
sS5% that satisfy some linear-time formula ¢ of the form <@ or OGQ)
is measurable in ({2, A,P) [Var85]. When ¢ is such a property, or
a Boolean combination of these, we write Ps(yp) for the measure
P({r : = starts from s and satisfies ¢}) and call it the probability
that ¢ will be satisfied (starting from s).

Consider a Markov chain (S, P). A recurrent state is a state s € S
such that P,(O0Cs) = 1, i.e. starting from s one visits s infinitely
often with probability 1. A transient state is a state s € S such
that P,(O0Cs) = 0, i.e. starting from s one visits s infinitely often
with probability 0. Since, starting from s, the probability of visiting
s again is either 1 or less than 1, all states are either recurrent or
transient. Furthermore, all states reachable from a recurrent state
are recurrent.

Similarly, when state s, is reachable from s, the probability of
visiting s; infinitely often coincides with the probability of visiting sy
and s, infinitely often (starting from a given s). Or, using temporal
logic notation:

Lemma 3.1. If s; = s5 then P,(0Cs; A OOsy) = P (O0s,).

Proof (Idea). Since s, is reachable from s;, every time one visits s;
there is a strictly positive probability that sy will be visited before
a given number of steps. Thus if one visits s; infinitely often, then
almost surely s, will be visited infinitely often. ad

We now introduce attractors, which will play a key role in our
analysis:

Definition 3.2. A set A C S of states is an attractor if Ps(CA) =1
forallse S.

In other words, regardless of the state in which we start, we will
almost surely enter the attractor eventually. Observe that if A is an
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attractor, then for all s € S, P,(O0CA) = 1: we will almost surely
visit A infinitely many times.

The next Lemma describes a property of the BSCCs of the graph
of a finite attractor A, which will be useful in our algorithms (to prove
Lemma 4.1 and Lemma 4.2).

Lemma 3.3. Consider a finite attractor A, a BSCC C' in Graph(A),
and a state s € C. Then, for all s' € C, Py(OCs") = 1.

Proof. Ps(OGA) = 1 since A is an attractor. Since C' is a BSCC
of Graph(A), A\ C is not reachable from C. Thus P,(O0CA) = 1
translates into Pg(OOC) = 1 (since s € C). Now, A being finite,
C' is finite too and there must be some s’ € C s.t. Py(0Cs") = 1.
Since C' is a BSSC of Graph(A) every state in C' is reachable from
every other state, so that P,(0<Cs’) = 1 for some s’ € C entails
P,(OCs") =1 for all ¢ € C' (by Lemma 3.1). 0

The next Lemma enables us to characterize certain properties
of the sets of reachable states in the systems of Section 5 through
Section 6

Lemma 3.4. Consider a finite attractor A and a set A’. If A" is
reachable from each state s € A, then A’ is also an attractor.

Proof. Consider s € S. We have P,(0CA) = 1. Since A is finite,
there must be s; € A such that P,(0Cs;) = 1. By assumption,
there is sy € A’ reachable from s;. By Lemma 3.1, P,(O<$s,) = 1,
hence P,(O0GA") = 1. (Observe that s; and s, depend on s.) O

Lemma 3.5. Assume A is a finite attractor and write C,...,C,
for the BSCCs of Graph(A). For any s € S

Proof. Since Cy U --- U (), is reachable from any state in A, it is
an attractor (Lemma 3.4). For i # j, C; is not reachable from Cj,
hence P,(OC; A OC;) = 0. Thus Py(O(CL U---UC,)) = 1 entails
Py (OCy) + -+ - + Py(¢C,) = 1. We conclude by observing that, for
any 1, Py(OC;) = Py(O0C;) (Lemma 3.3). 0

This can be refined in
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Lemma 3.6. Assume A is a finite attractor and s € S is some
state. Let C1,...,C}. be the BSCCs in Graph(A) that are reachable
from s. Then

P (OCT) + -+ + Po(OC,) =Py (BOCY) + -+ - + P, (OOC)) = 1.

Proof. From Lemma 3.5, relying on the fact that P, (CC) = Py (OOC)
0 when C is not reachable from s. O

4 Reachability Analysis for Markov Chains

In this section we explain how to check reachability and repeated

reachability for Markov chains. We show how to reduce qualitative

properties of the above two types into the analysis of the underlying

(non-probabilistic) transition system of the Markov chain.
Formally, the problems we consider are:

Probabilistic Reachability

Instance: A Markov chain M = (S, P), a state s € S, and a set
QCS.

Question: Does P,(<¢Q) = 17, i.e. is ) almost surely reached from
s?

Probabilistic Repeated Reachability

Instance: A Markov chain M = (S, P), a state s € S, and a set
QCS.

Question: Does P,(00Q) = 17, i.e. is () almost surely repeatedly
reached from s?

Observe that the above problems are not yet algorithmic prob-
lems since we did not specify how an instance is to be finitely en-
coded (we do not assume that the Markov chain (S, P) is finite). In
Sections 5—7 we consider reachability and repeated reachability prob-
lems when countable Markov chains are described by probabilistic
lossy channel systems. For such finite descriptions we investigate the
corresponding algorithmic problems.

For a countable Markov chain (S, P) containing a finite attractor
A, the following Lemma reduces probabilistic reachability problems
in (S, P) to reachability problems in Graph(A).
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Lemma 4.1. Assume A is a finite attractor, s € S is some state
and Q C S is some set of states: Ps(OQ) < 1 iff there exists a BSCC
C' in Graph(A) such that:

(1) Q is not reachable from C, and

(2) it is possible to reach C' from s without traversing Q.

Proof. (<): Let u be a finite path leading from s to C' without
visiting ). Since () is not reachable from C', any run with prefix u
never visits Q). The set of such runs has measure P(D,) > 0. Thus
P, (=0Q) > P(D,) > 0, entailing P,(CQ) < 1.

(=): Write C4,...,C, for the BSCCs of Graph(A) and UC for
Cy U ---UC,. Since UC is an attractor, Py(OCUC) = 1, so that
P,(OQ) = Py(GQ A OQUC). Since a C; is not reachable from a C;
when ¢ # j, the events OCC,, OOC,, ..., OOGC, form a partition
of OCUC. Hence P,(CQ N OOUC) = Py(CQ N OOCY) + -+ +
P, (CQ N OOCC,). Thus Py (GQ) < 1 entails that P (OGQ A OOCC) <
P,(0OC) for one C' among (1, ..., C),.

If @ is reachable from C', then Py (OCC) = P, (OOCC A OOQ) (by
Lemma 3.1). Similarly, if all runs from s that reach C visit @, then
P, (0OC) = Py(O0GC A Q). Thus, if Py(0Q A OOC) < Py(O0C),
then C satisfies (1) and (2). O

From Lemma 4.1 we conclude that we can define a scheme for
solving the reachability problem as follows.

Scheme — Probabilistic Reachability

Input Markov chain M = (S,P) with an underlying
transition system 7" = (S,—), a state s € S, and a set
QCS.
Output Is @ reached from s with probability one?
begin
1. construct a finite attractor A
2. construct Graph(A) and list its BSCCs (4, ..., C,
3. for each BSCC C' in Graph(A)
3a. if s € Until(S \ Q,C)
3b. and —(C = Q)
3c. then return(false)
4. return(true)
end
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For solving the probabilistic repeated reachability problem, we
rely on the following Lemma:

Lemma 4.2. Consider a finite attractor A, a state s € S, and a set
Q C S. Then P,(OCQ) = 1 iff Q is reachable from each BSCC C of

Graph(A) that is reachable from s.

Proof. (<) Let C1,...,C}. be the BSCCs that are reachable from s.
Write UC for CjU- - -UC).. We have P,(O0OUC) = 1 (by Lemma 3.6)
and then P,(OCUCAOCR) = 1 (by Lemma 3.1) since @ is reachable
from any state in UC.

(=) If @ is not reachable from C then P,(O0CQ) < 1—-P,(CC). O

From Lemma 4.2 we conclude that we can define a scheme for
solving the repeated reachability problem by modifying the previous
algorithmic scheme as follows:

| 3a. if C is reachable from s |

The correctness of the two schemes follows immediately from
Lemma 4.1 and Lemma 4.2. Furthermore, we observe that, in order
to turn these schemes into algorithms for checking the reachability
and repeated reachability problems, it is sufficient to establish the
following three effectiveness properties for the operations involved:

1. Existence and computability of a finite attractor. This condition
allows computing the set A.

2. Decidability of the reachability problem for the underlying tran-
sition system 7. This condition allows computing Graph(A) and
checking the various reachability conditions like “C = Q” or
“g i) o,

3. Decidability of the constrained reachability problem for the un-
derlying transition system. This condition is only used in the
reachability algorithm.

5 Lossy Channel Systems

In this section we consider (probabilistic) lossy channel systems: pro-
cesses with a finite set of local states operating on a number of un-
bounded and unreliable channels. We use the schemes defined in
Section 4 to solve the problem of whether a set of local states is (re-
peatedly) reachable from a given initial state with probability one.
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5.1 Basic Notions

Structure of Channel Systems. A lossy channel system consists of a
finite state process operating on a finite set of channels, and where
each channel behaves as an unbounded FIFO buffer which is un-
reliable in the sense that it can nondeterministically lose messages.
Formally, a lossy channel system (LCS) L is a tuple (S, C,M, T) where
S is a finite set of local states, C is a finite set of channels, M is a fi-
nite message alphabet, and T is a set of transitions each of the form
(s1,0p, s2), where s1,82 € S, and op is an operation of one of the
forms c!m (sending message m to channel c), or c’m (receiving mes-
sage m from channel ¢). A global state s is of the form (s,w) where
s € S and w is a mapping from C to M* that gives the current contents
of each channel. By abuse of notations, we write ¢ for denoting both
the empty word in M* and the “empty” map that associates ¢ with
each c € C.

For words z,y € M*, we let x ® y denote the concatenation of x
and y. We use |z| to denote the length of z, and z(7) to denote the
i" element of # where 1 < i < |z|. We write z < y to denote that
x is a (not necessarily contiguous) substring of y. Since M is finite,
Higman’s Lemma [High2| implies that < is a well-quasi-ordering (a
wqo), hence for each infinite sequence xg, z1, x, . . . of words from M*,
there are ¢ and j with ¢ < j and z; < ;. For w,w' € (C — M*), we
define |w| = > .. [w(c)| and use w < w’ to denote that w(c) < w'(c)
for each ¢ € C: this is again a wqo. We further extend this to a
wqo on S X (C+ M), by defining (s1,w;) < (s2,ws) iff s; = s5 and
w, = W

Operational Semantics. The LCS L induces a transition system
(S, —), where S is the set of global states, i.e., S = (S x (C+— M*)).
We start by defining normal steps (where messages are not lost):
there is a step (s1,w;) — (S92, ws) if one of the following conditions is
satisfied

— There is a t € T, where t is of the form (s1, clm, s5) and wy is the
result of appending m to the end of wy(c).

— There is a t € T, where t is of the form (s, c?m, s5) and w; is the
result of removing m from the head of wy(c) (thus wy(c) must be
of the form m e z).
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In any of these cases we define t(sy,w;) = (s2,w2) and say that t is
enabled at (s1,w;). We let enabled(s,w) = {t : t is enabled at (s,w)}.
A state (s,w) is a deadlock state if enabled(s,w) is empty. An LCS
is deadlock-free if there are no deadlock states. It is easy to check
whether an LCS is deadlock-free (see Section 8.3).

The definition of the transition system (S, —) is complete after
we take into account the possibility of message losses: if (s1,w;) —
(s2,w2) is a normal step, then for each wh, < wa, (s1,w1) — (s2,w)) is
also a step.

For the rest of this section we assume an LCS £ = (S,C,M,T)
whose behavior is given by the associated transition system (S, —) °.

For Q C S, we define a Q-state to be a state of the form (s, w)
where s € Q.

A set Q C S is said to be upward closed if s;1 € ) and s; = s9
imply ss € Q. Notice that, for any Q C S, the set of Q-states is an
upward closed set. The upward closure ) T of a set @) is the set
{s : 3¢ € Q. s < s}. We use min(Q)) to denote the set of minimal
elements of () (with respect to <). This set is unique and (by Hig-
man’s lemma) finite. Furthermore, if ) is upward closed then @ is
completely characterized by min(Q) in the sense that ) = min(Q) 7.

Lemma 5.1 ([AJ96Db]). For states s; and s, it is decidable whether
s9 is reachable from sy.

Lemma 5.2 ([AJ96b]). For a state s and a set Q C S, it is decid-
able whether the set of Q-states is reachable from s.

5.2 Probabilistic Lossy Channel Systems

A probabilistic lossy channel system (PLCS) L is of the form (S,C,M, T, \, w),
where (S,C,M, T) is an LCS, A € (0,1), and w is a mapping from T to
the positive natural numbers. Intuitively, we derive a Markov chain
from the PLCS L by assigning probabilities to the transitions of the

5 Remark on notation: Observe that we use s and S to range over local states and
sets of local states respectively, while we use s and S to range over states and sets
of states of the induced transition system (states of the transition system are global
states of the LCS).
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underlying transition system (S, C,M, T). The probability of perform-
ing a transition t from a global state (s,w) is determined by the
weight w(t) of t compared to the weights of the other transitions
which are enabled at (s, w). Furthermore, after performing each tran-
sition, each message which resides inside one of the channels may be
lost with a probability A. This means that the probability of reach-
ing (sq,ws) from (sq,w;) is equal to (the sum over all (s3,w3) of) the
probability of reaching some (s3,w3) from (s1,w;) through perform-
ing a transition of the underlying LCS, multiplied by the probability
of reaching (sg,ws) from (s3,ws3) through the loss of messages.

Now, we show how to define formally these probabilities. For
simplicity, and throughout the rest of this article, we assume that
PLCS’s are deadlock-free. We refer to Section 8.3 for indications on
how to deal with PLCS’s having deadlock states.

First, we compute probabilities of reaching states through the
loss of messages. For =,y € M*, we define # (z,y) to be the size of
the set

{(i1, .. yip) i1 < - <ipand x=y(i;) ®---ey(i,)}.

In other words, # (z,y) is the number of the different ways in which
we can delete symbols in the word y in order to obtain x. We also

define

Pu(a,y) = # (g.2) - N (1= Q)P (1

Pr(z,y) is the probability that the string z becomes y by losing
some of its symbols when each symbol can be lost with probability
A. One readily checks that > . Pr(z,y) =1 for all z € M, using
the following two combinatorial equalities:

VkeEN: Y #(ya) = ('i'), (2)

|z‘ |x| yeEM
Z(k) ATE @ = (1= =1 (3)

We extend Py, to a probability of transforming a state to another
state by message losses. For wy,wy € (C— M*), we define P (wy,wy) =
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[Lecc Pr (wi(c),wa(c)). Notice that Pp(wi,w2) = 0 in case w; A wa.
We take

PL(Wl,WQ) lf S1 = Sa,

(4)

0 otherwise.

Pr((s1,w1), (s2,w2)) = {

We define UJ(S, W) = ZtEenabled(s,w) ’U)(t)
The PLCS £ induces a Markov chain (S, P), where

S =8x (Cr M), (5)
P((srw) (sn,wa)) = X (0 (on ) sawa)) ) - (0

teT

The restriction to deadlock-free PLCS’s ensures that no division by
zero occurs in Equation (6). Observe that, for all (s1,w;) € S, Equa-
tion (6) ensures >, ycs P((s1,%1), (s2,w2)) = 1, so that (S, P) is
indeed a Markov chain.

We now instantiate the probabilistic reachability problems con-
sidered in Section 3 and Section 4 to PLCS’s.

Below, we assume a PLCS £ = (8,C,M, T, A\, w) inducing a Markov
chain M = (S, P) with an underlying transition system 7" = (S, —):
observe that (S, —) is the same transition system we associated with
the (non-probabilistic) LCS given by (S,C,M, T).

We shall consider the probabilistic (repeated) reachability prob-
lem for PLCS’s. We check whether an upward closed set, represented
by its minimal elements, is (repeatedly) reached from a given initial
state with probability one. We show that the (repeated) reachabil-
ity problem instantiated in this manner fulfills the three conditions
required for effective implementation of the probabilistic (repeated)
reachability schemes of Section 4.

5.3 Finite Attractors in Probabilistic Lossy Channel
Systems

The following crucial Lemma shows that there always exists a finite
attractor in the Markov chain associated with a PLCS.

Lemma 5.3. For each PLCS (S,C,M, T, \,w) with A\ > 0, the set
Qo = {(s,e) : s €S} is an attractor.
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The intuition behind this result is simple: in a state (s,w) with |w]|
large enough, the system is more likely to move “down” to a next
state with less messages (because of losses), than “up” to a next
state with one more message (this requires a send operation and no
losses). Thus the system is attracted “down” to small states. Now,
whatever finite set A of small states turns out to be an attractor, Qg
is reachable from any state in A (by message losses) and is thus an
attractor (Lemma 3.4).

In the rest of this section, we turn this intuition into a rigor-
ous proof, using only elementary notions. This requires tedious work
where one builds adequate upper- and lower-bounds for the proba-
bilities of going “up” or “down”. (A possible alternative approach
would be to use standard arguments of martingale theory [KSK66].)

Assume £ = (8,C,M, T, \,w) is fixed. For any n € N, write @,
for {(s,w) : |w| =n}, the set of global states in which the channels
currently contain a total of n messages. We want to prove that Qg
is an attractor.

For any global state (s,w), let P5, denote P(s.)(GQp). We have:

> P((s,w), (8 W) x Py ifwe,
]P)s w — (slvwl) (7)

B

1 otherwise.

Write P, for min {P; , : (s,w) € @Q,,} and Q, formin {P; : 0 <i <n}:
Py = Qo = 1, and the sequence (Q,, ) e is positive and non-increasing,.

For any n > 0 and (s,w) € @, we can split the sum in Equation
(7) by distinguishing whether (s’,w') is in @Q,11, in @,, or in some Q;
with ¢ < n. For this, we introduce the following terms:

Usw = Z P((S,W) ) (S/,W/)),

(S/,w/)Gan,1

bs,w = Z P<<S7W) ) (S/,W/)),

(s'w)eEQn
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Observe that asy + bsy + Csy = 1.
Using Q as a lower bound for the Py ,’s, and observing that
P((s,w),(s’,w')) =0 when |w'| > n + 1, Equation (7) entails

]P)s,w 2 as,w@n—l + bs,w@n + CS,WQTH—I- (8)

Pick one of the (s,w)’s in @, that make P;; minimal and write a,,
b, and ¢, for asy, bsy, and ¢y respectively. From Equation (8) we
derive

Pn 2 an@nfl + bn@n + Cn@n+1~ (9)
Since a, + b, + ¢, = 1 and (Q;);ey is non-increasing
Qn—l Z an@n—l + bn@n + Cn@n-f—l (10)

holds obviously. Now, by definition, Q,, = min(P,,, Q,_1). Thus, com-
bining Equations (9) and (10), we deduce

Qn Z an@nfl + bn@n + Cn@n+17 (11)
and then (again using a,, + b, + ¢, = 1)
Cn(@n - Qn+1> Z an(@n—l - Qn) (12)

Write now 9, for Q, — Q,.1: since (Q;);en is non-increasing and
stays positive, (J, )nen is positive with lim,, ., d, = 0. Equation (12)
rewrites as 0,—1 < 0y, entailing, for any n and &

Cn+1 Cp+2 Cn+k s

op < n+k- (13)

n =

(nt1 Gnt2 On+k

We now use the intuition that message losses make the system at-
tracted to small states. Assume (s,w) € @,. Then, using Equations
(1) and (6), one sees that cs, < (1 — \)"™' (equality holds when
all operations available in state (s,w) are send operations). Simi-
larly, bsy < n(1 — A)"A. Thus lim,,_, ¢, = lim,,_,« b, = 0, entailing
lim,, o an, = 1 and

k

lim JT& = o (14)
k—o0 ey Qptg

for all n € N.

Combining Equations (13) and (14) shows that 6, = 0. This
holds for all n so that @, = 1 for all n, and hence Ps, = 1 for all
(s,w). This exactly means that Qg is an attractor.
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5.4 Verification of Probabilistic Lossy Channel Systems

From Lemma 5.1, and the fact that the transition system underlying
a PLCS (S,C,M, T, \,w) is independent of A we obtain:

Lemma 5.4. For each PLCS (S,C,M,T, \,w), we can compute the
graph Graph(A) of a finite set A.

Furthermore, for two PLCS’s £ = (S,C,M, T, A\, w) and L' = (S,C,M, T, \', w’)
which differ only by probabilities (we assume that for all t € T

w(t) > 0 iff w'(t) > 0), A has the same graph in both PLCS’s. Now

we are ready to solve Probabilistic Reachability and Probabilistic
Repeated Reachability problems for PLCS’s.

Probabilistic Reachability for PLCS’s

Instance: A PLCS M = (S,C,M, T, \,w), a state s, and a set Q C S.
Question: Is the set of Q-states reachable from s with probability
one?

Probabilistic Repeated Reachability for PLCS’s

Instance: A PLCS M = (S,C,M, T, \,w), a state s, and a set Q C S.
Question: Is the set of Q-states repeatedly reachable from s with
probability one?

Theorem 5.5. Probabilistic Reachability and Probabilistic Repeated
Reachability are decidable for PLCS’s.

Proof. Lemmas 5.2, 5.3, and 5.4 provide the effective procedures re-
quired to implement the scheme (from Section 4) for probabilistic re-
peated reachability in Markov chains. For probabilistic reachability,
a possible proof is by extending Lemma 5.2 and showing decidability
of constrained reachability in LCS’s.

However, another proof is possible. For PLCS’s, Probabilistic
Reachability easily reduces to Probabilistic Repeated Reachability.
The probability that the set of Q-states will be reached in some PLCS
L is exactly the probability that this set will be repeatedly reached
in the variant PLCS £’ one obtains by removing in £ all transitions
of the form (s, op, s2) having s; € Q, and replacing them by looping
transitions (sp, c/m, s1) for some arbitrary ¢ and m. O
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Remark 5.6. In our definition of LCS’s and PLCS’s, we assume that
messages are lost only after performing non-lossy transitions. This
choice simplifies the definition of the Markov chain associated with
a PLCS. However, our analysis can be modified in a straightforward
manner to deal with the case where losses occur before, and the case
where losses occur both before and after non-lossy transitions.

6 Duplication, Corruption, and Insertion

We consider PLCS’s with different sources of unreliability such as
duplication, corruption, and insertion combined with lossiness.

6.1 Duplication

We analyze a variant of PLCS’s, where we add another source of
unreliability; namely a message inside a channel may be duplicated
[CFP96].

An LCS £ with duplication errors is of the same form (S,C,M, T)
as an LCS. We define the behavior of £ as follows. For a € M, we use
a™ to denote the concatenation of n copies of a. For x = ajas---a,
with x € M*, we define Duplicate(x) to be the set

{byby -+ b, : either b; = a; or b; = a? for each 7:1 < i <n}

In other words, we get each member of Duplicate(z) by duplicat-
ing some of the elements of x. We extend the definition of Duplicate
to 8 x (C — M*) in a similar manner to Section 5. The transition
relation of an LCS £ with duplication errors extends that of the
corresponding standard LCS in the sense that:

— If (s1,w1) — (s2,wa) according to the definition of Section 5 then
(s1,w1) — (sh,w)) for each (sh,wh) € Duplicate(sy, ws).

In [CFP96], it is shown that the reachability problem is decidable
for LCS’s with duplication errors. Hence we have

Lemma 6.1. Given an LCS with duplication errors.

1. For states sy and sq, it is decidable whether sy is reachable from
sy [CFP96]. Hence, Graph(A) is computable for any finite set A
of states.
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2. For a state s and a set Q C S, it is decidable whether the set of
Q-states is reachable from s [CFPI0].

A PLCS with duplication errors is of the form (S,C,M, T, \, w, Ap),
where (8,C,M, T, \,w) is a PLCS, and Ap € [0, 1]. The value of Ap
represents the probability by which any given message is duplicated
inside the channels.

To obtain the Markov chain induced by a PL.CS with duplication
errors, we compute probabilities of reaching states through dupli-
cation of messages. For x,y € M*, where x = ajas - --a,, we define

#p (x,y) to be the size of the set { (i1,...,4,) : 1 <i; <2andy=a'ay---

In other words, #p (z,y) is the number of different ways in which
we can duplicate symbols in the word z in order to obtain y. In a
similar manner to the case of losing messages (Section 5), we define

Pp(x,y) = #p (z,y) - g (1 = Ap)lel, (15)

and Pp(wi,wy) = [ cc Pp (w1(c),w2(c)). The PLCS with duplication
errors £ induces a Markov chain (S, Pj,) with S = (S x (C — M")) as
before, and

Pp ((s1,m1), (s2,w2)) = D> P((s1,1), (s2,w3)) - Pp (ws,wa),

w3 €(C—M*)

(16)
where P has the same definition as in Section 5.

Remark 6.2. The above choice of a definition for P}, is partly ar-
bitrary. For example, it considers that duplications occur randomly
after normal transitions and losses, and that a message is duplicated
at most once during a single step. Similar remarks apply to our def-
initions (in the following subsections) for systems with corruptions,
insertions, and other unreliability sources.

All these choices aim at simplicity, and variant definitions are
possible. We let the reader convince herself that these variants would
lead to decidability results that are essentially identical to the ones
we present for our definitions.

Lemma 6.3. For each PLCS (S,C,M, T, \,w, A\p) with A > Ap > 0,
the set Qo = {(s,e) : s € S} is an attractor.

i1 12

2
air}.
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Proof (Sketch). Let s = (s,w) be a state with n messages and con-
sider what happens to each individual message in the corruption
phase (i.e. losses and duplications). With probability A, the mes-
sage is lost. With probability (1 — A\)Ap it is duplicated, and with
probability (1 — A)(1 — Ap) it is kept unmodified. Observe that all
messages are lost, or duplicated, or kept unmodified, independently
of the other messages.

For k between —n and n, write 6% for the probability that the
corruption phase ends up with n 4 k£ messages. The assumption A >
Ap entails 6% > 6% for any positive k. In other words, the number
of messages in the channels is more likely to decrease by k than to
increase by k through corruption.

If we now take into account the fact that a normal step can at
most write one message, the expected number of messages after a
step from s is

n+1
ZP’D(S,S/)XL?/’ < n+1+ Z kot ..
s'es k=—n—1

Using A > 0, one can show this expected number is < n for n large
enough. Thus, when n is large enough, the system is attracted to
small states.

These considerations can be turned into a rigorous proof similar
to (but necessarily more tedious than) the proof of Lemma 5.3. Here
too a shorter albeit less elementary proof can be obtained with mar-
tingale theory. O

As in Section 5, we derive from Lemma 6.1 and Lemma 6.3:

Theorem 6.4. Probabilistic Reachability and Probabilistic Repeated
Reachability are decidable for PLCS’s with duplication errors when
A>Ap > 0.

6.2 Corruption

We consider LCS’s with corruption errors, i.e., where a message
inside a channel may be changed to any other message. For sim-
plicity, we assume [M| > 1. We extend the semantics of LCS’s to
include corruption errors in the same manner as we did above for
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duplication errors. For z € M*, we define Corrupt(x) to be the set
{y eM* : |y| = |z|}, i.e., we get a member of Corrupt(z) by chang-
ing any number of symbols in x to another symbol in M. We extend
the definition to S x (C + M*) in the same manner as before. Fur-
thermore, we enlarge the transition relation of an LCS:

— If (s1,w1) — (s2,wa) according to the definition of Section 5 then
(s1,w1) — (sh,w)) for each (s}, w)) € Corrupt(sa,ws).

Decidability of the reachability problem for LCS’s with corrup-
tion errors follows from the fact (s1,w;) = (s, ws) implies (s, w;) —
(s9,ws) for each w3 with |w3(c)| = |wa(c)| for all ¢ € C. This implies
that the only relevant information to consider about the channels in
the reachability algorithm is the length of their contents. In other
words, the problem is reduced to a special case of LCS’s where the set
M can be considered to be a singleton. The constrained reachability
problem can be solved in a similar manner. Hence,

Lemma 6.5. Given an LCS with corruption errors.

1. For states sy and sq, 1t is decidable whether sy is reachable from
s1. Hence, Graph(A) is computable for any finite set A of states.

2. For a state s and a set Q C S, it is decidable whether the set of
Q-states is reachable from s.

A PLCS with corruption errors is of the form (S,C,M, T, A\, w, A\¢),
where Ao € [0, 1] represents the probability by which any given mes-
sage is corrupted to some other message. For z,y € M*, we define
#c (z,y) to be the size of the set {i : z(i) # y(i)}. In other words,
#c (z,y) is the number of elements which must change in order to
obtain y from x. We define

#C(mvy) z|— T
mA\_ﬂ) (1= Ag)l—#e@y)

if || = [yl
Pc(flf,y): (

0 otherwise.

(17)

Thus Po(z,y) is the probability that z will become y when its |z
letters are independently corrupted with probability Ao. Observe
that for any z € M* we have ) . Po(z,y) = 1: this is seen by

noting that, for & < |z|, there are exactly (M| — 1)’“('?) words y for
which #¢ (z,y) = k.
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We extend P from M* to S x (C — M*) as before. In a manner sim-
ilar to the previous case with duplication, the PLCS with corruption
errors £ induces a Markov chain (S, P/,) with

PL((s1,w1), (s0,w)) = Y P((s1,W), (s2,w3)) - Por (w3, W) .

w3€E (O—)M*)

(18)

Lemma 6.6. For each PLCS (S,C,M, T, \,w, A¢) with A > 0, the set
Qo = {(s,e) : s €8} is an attractor.

From Lemma 6.5 and Lemma 6.6 we can derive in a similar man-
ner to Section 5.

Theorem 6.7. Probabilistic Reachability and Probabilistic Repeated
Reachability are decidable for PLCS’s with corruption errors.

6.3 Insertion

We consider LCS’s with insertion errors, i.e., where arbitrary mes-
sages can be inserted spuriously inside a channel [CFP96]. As be-
fore, we extend the semantics of LCS’s to include insertion errors:
for © € M*, we define Insert(z) to be the set {y e M* : z <y}. We
extend this in the usual way to obtain a definition of Insert(s) where
s is a state in S x (C — M*). Then we enlarge the transition relation
on an LCS:

— If (s1,w1) — (s2,w2) according to the definition of Section 5 then
(s1,w1) — (s),w)) for each (s, w)) € Insert(ss,ws).

Decidability of the reachability problem for LCS’s with insertion
errors is easy [CFP96] since, for one-step moves, it holds that

(s1,w1) — (s9,wq) iff (s1,w1) — (s2,¢).

A PLCS with insertion errors is of the form (S,C,M, T, A\, w, Ar)
where \; € [0,1) commands the probability that some message is
inserted. We assume a geometric distribution, where there is a prob-
ability A¥(1 — A7) that k messages will be inserted during one step,
but other choices are possible.
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The definition of P;(z,y), the probability that x is transformed
into y by insertion errors, considers several cases. We let Pr(z,z) =
(1 — A7) and, when |y| > |z|, we define P;(x,y) by induction on the
number |y| — |x| of inserted messages:

#@2)
(1 ey v ()

Pr(z,y) = A/ Z

zEMll'H’l

In all other cases, we let P(x,y) = 0.
Using the following combinatorial equality:

Y #(wz) =M (1)), (20)

Z6M|IH»1

and induction on k, one easily shows that

Y. Pilay) =M1 = Ap) (21)

yEM‘IH'k

as intended. Note that, as a consequence, Y _.. Pr(z,y) =1 for all
r € M.

We extend P; from M* to S x (C — M*) as before. In a manner sim-
ilar to the previous cases, the PLCS with insertion errors £ induces

a Markov chain (S, P;) with

yeM*

Pi((s1,w), (s2,w2)) = > P((s1,m),(s5,u3)) - Pr (w3, w2) . (22)

w3 E€(C—M*)

Since the probability that k messages will be inserted in one step
does not depend on the size of the current state (Eq. (21)), the
system is attracted to small states.

Lemma 6.8. For each PLCS (S,C,M, T, \,w, A;) with A > 0, the set
Qo = {(s,e) : s €S} is an attractor.

Since the necessary reachability properties are decidable for PLCS’s
with insertion errors, Lemma 6.8 allows us to proceed as in Section 5.

Theorem 6.9. Probabilistic Reachability and Probabilistic Repeated
Reachability are decidable for PLCS’s with insertion errors.
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6.4 Other Unreliability Sources

The approach we just developed for duplication, corruption and in-
sertion errors can be adapted to deal with variant, or restricted,
versions of these three main kinds of errors. Furthermore, we can
combine different sources of unreliability. For instance, we can con-
sider models where we have both duplication and corruption together
with lossiness. In all these cases, our methods will carry over when
reachability remains decidable and when a finite attractor exists. In
general, this requires that unreliability sources which may increase
the number of messages inside the channels (such as insertion and
duplication but not corruption) have sufficiently low probabilities
(compared to lossiness).

7 Automata-Definable Properties

In this section we consider more general properties than reachability
and repeated reachability for PLCS’s. Let ¢ be a property of com-
putations (also called a linear-time property). We are interested in
whether Py(¢) = 1 for s a state of a PLCS, i.e. whether a run start-
ing from s almost surely satisfies . We show that if the properties
of computations are specified by (the w-behavior of) finite state au-
tomata, or equivalently by formulas of the monadic logic of order,
called “MSO formulas”, then the above problem is decidable. (Sim-
ilar results hold for the other families of faulty probabilistic systems
we considered in Section 6. Since the proofs for these systems follow
the same pattern as for PLCS’s, we will confine ourselves to PLCS’s
here.)

7.1 State-Labeled Systems and w-Automata

In order to check a property defined by a deterministic finite state
automaton, we shall build its product with the given PLCS. This
approach assumes that we extend LCS’s with a labeling function: a
state-labeled LCS is an LCS together with a finite alphabet 3 and
a labeling function [ab from the local states to Y. Throughout this
section we assume that LCS’s are state-labeled and will often use
“LCS” for “state-labeled LCS”. We lift the labeling from an LCS £
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to the state-labeled transition system T = (S, —, X, lab) it induces:
the label of every state (s,w) in 7" is the label lab(s) of its local state
component. When we deal with probabilistic lossy channel systems
we also assume that the underlying LCS is labeled, and this label-
ing is lifted to the labeling of the corresponding Markov chain. In
this manner we obtain state-labeled PLCS’s inducing state-labeled
Markov chains.

A path sg, s1, ... in a state-labeled transition system gives rise to
its trace, the w-string lab(sg), lab(sy), ... over the alphabet X. We
consider properties of paths that are defined using automata: the
trace of the path must be accepted by the automaton. Recall that a
finite (Muller) automaton A is a tuple (Q, X, —, qo, F), consisting
of a finite set Q of states, a finite alphabet X, a transition relation —
which is a subset of Qx X' x Q. an initial state gy € Q, and a collection
F C 29 of fairness conditions. We write ¢ = ¢’ if (¢, a, ¢') €—. We
say that A is deterministic if for every state ¢ € Q and every letter
a € X there is one and only one ¢’ € Q such that ¢ = ¢

A run of A is an w-sequence ¢oagg1a, - .. such that ¢; = g+ for
all 7. With such a run we associate the set Inf of all ¢ € Q that
appear infinitely many times. A run meets the fairness conditions F
if its Inf set belongs to F (Muller acceptance). An w-string agay . . .
over X' is accepted by A if there is a run gpagqia; . .. that meets the
fairness conditions of A. The w-language accepted by A is the set of
all w-strings accepted by A.

We recall the following classical theorem (see [Tho90]) stating
that automata have the same expressive power as the monadic logic
of order:

Theorem 7.1. For an w-language L, the following conditions are
equivalent:

1. L is accepted by a finite state automaton,

2. L s accepted by a deterministic Muller automaton,

3. L is definable by a MSO formula.

7.2 Products With Automata

Consider an automaton A = (Q, X, —,qo, F), and a state-labeled
transition system 7' = (S, —, X, lab). The product A x T of A and
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T is a state-labeled transition system 7" = (S, —', X lab’) defined
as follows:

States: S" = Q x S is the Cartesian product of the states of A and
of T

Labeling: A state (q,s) is labeled by lab(s), i.e., it has the same
label as s in T'.

Transition relation: There is a transition (q,s) —' (¢, ") iff there

. e . . .- lab(s) .
is a transition s — s in T" and there is a transition ¢ — ¢’ in

A.

We also define the product R = A x M of a deterministic au-
tomaton and a state-labeled Markov chain M = (S, P, X, lab). Here
the states and labels are as in A x T'. The probability P’ in R is
given by

P(s,s) if ¢ ¢ in A
Pl((Q7 S)v<q,78/)) = ’ . ’
0 otherwise.
Observe that the requirement that A is deterministic ensures that
the sum of probabilities of the transitions from the state (g, s) is the
same as the sum of probabilities of the transitions from the state s in
M, i.e. the sum is one. Hence the product is indeed a labeled Markov
chain. Observe further that if 7" is the transition system underlying
M, then A x T is exactly the transition system underlying A x M.

Finally, the product £ = A x L of an automaton with an LCS
is defined along the same lines: the local states are pairs (q,s) of
a state of A and a local state of £. The transitions T’ of L' are

all ((¢,s),0p,(¢,s")) such that (s,op,s’) is a transition of £ and

lab . e S
q lab(e) ¢ is a transition in A. We define the product of a deterministic

A and a PLCS £ along the same lines.
A crucial property of these constructions is the following:

Lemma 7.2.

1. If T is the transition system induced by an LCS L then A x T is
(isomorphic to) the transition system induced by the LCS A x L.

2. If M is the Markov chain induced by a PLCS L then A x M is
(isomorphic to) the Markov chain induced by the PLCS A x L.



Verification of Probabilistic Systems with Faulty Communication 27

Here the isomorphism associates (g, (s, w)), a state of AXT (resp. AX
M), with ((q,s),w), a state of the transition system (resp. Markov
chain) induced by A x L.

We extend the notion of Inf sets to computations (qo, So) (g1, S1) - - -
in some A x T or some A x M: it is the set of states (from Q) that
appear infinitely many times in the sequence qyq; . . ..

Lemma 7.3. Let A be a deterministic automaton with a set F of
fairness conditions, let M be a labeled Markov chain, let R be the
product Ax M. Then the probability that a computation of M starting
from s is accepted by A is the probability that a computation of R
starting from (qo, s) has Inf € F.

Proof (Idea). With a path m = sgs; ... in M we associate 7, the

only path in R of the form (qo, So) (q1,51) ... with ¢; fabls:) i1 for

all i. For any 7, m exists and is unique because A is deterministic.
Furthermore, any path in R is 7 for some path 7 in M. The measure
of a set L of paths in M is exactly the measure in R of LA, the set
{7T‘A CmE L}. It remains to observe that 7 is accepted by A iff 74
has Inf € F. See [CY95, § 4.1] for more details. 0

7.3 Probabilistic Model Checking

We can now verify whether a probabilistic LCS satisfies an automata-
definable (or MSO) property almost surely. We consider the following
problem:

Probabilistic Model Checking for PLCS’s

Instance: A state-labeled PLCS £ which defines a state-labeled
Markov chain M, a state s in M, and an automaton A.

Question: Are the computations of M starting from s accepted by
A with probability one?

In the rest of this section we prove the following:

Theorem 7.4. Probabilistic Model Checking for PLCS’s is decid-
able.

Assume A = (Q, X, —, qo, F) is deterministic (or replace it with
an equivalent deterministic automaton, using Theorem 7.1). Let R
be the product of A with the labeled Markov chain M induced by L.
It is enough to check whether Py, (Inf € F) = 1in R (Lemma 7.3).
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Lemma 7.5. Assume B is a finite attractor of R. Then the follow-
ing are equivalent:

1. ]P(qo,S)(Inf € f) =1.
2. For each BSCC C in Graph(B), if C is reachable from (qo, s)
then there is F' in F such that

(a) if (q,u) is reachable from C' in R then q € F and

(b) for each q € F there is u € M such that (q,u) is reachable
from C' in R.

Proof. (1.=2.) Assume that C' is a BSSC in Graph(B) reachable
from (qo, s): then P(GC) > 0, and P(OGC) > 0 by Lemma 3.5. If
P(Inf € F) = 1 then P(OCC A Inf € F) > 0, so that there must
exist some F' € F with

P(OOGC A Inf = F) > 0. (23)

This requires that, for every g € F, some (g, u) is reachable from C.
Furthermore, if some (g, u) is reachable from C' then, by Lemma 3.1,
P(OOC = OO (q,u)) = 1. Therefore (23) entails g € F.

(2.=1.) Assume that for a BSCC C there is some F' € F satisfying
(a) and (b). Then (a) entails P(OCC) = P(OGC A Inf C F).
On the other hand, for each ¢ € F, (b) and Lemma 3.1 entail that
P(OOC) = P(OOC A OO (q,u)) = P(OCC A ¢ € Inf). Thus
P(OOC) = P(OOC A Inf € F). Since this holds for every BSCC
reachable from (g, s), we obtain P(Inf € F) = 1 by Lemma 3.6. O

Now, since R is also the Markov chain induced by the PLCS
L' = Ax L (Lemma 7.2), the set B of states with empty channels in
R is a finite attractor for R (Lemma 5.3). Thus Lemma 7.5 applies
and provides necessary and sufficient conditions for the computations
of M that start at s to be accepted by A with probability one.

It remains to show that these conditions can be checked effec-
tively. First Graph(B) is computable using reachability algorithms
on L. Then the conditions of Lemma 7.5(2) can be checked with
algorithms for reachability of upward-closed sets (again on £L'): con-
dition (a) requires that ((Q\ F') xS) 1 is not reachable, and condition
(b) requires that each ({¢} x 8) T is reachable.
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8 Concluding Remarks

We have shown decidability of model checking for a realistic class
of probabilistic lossy channel systems, where during each step of the
runs of the systems, any message inside the channels may be lost
with a certain predefined probability.

8.1 Comparison with other work

A work closely related to this article is [BE99]. In fact, our work
can been as a generalization of the ideas presented in [BE99]. More
precisely, in [BE99], a formal model of PLCS’s is considered where
at most one message can be lost during each step of the execution
of the system. Thus a PLCS £ = (8,C,M, T, A\, w) induces a Markov
chain (8 x (C+ M*), P) where P is defined ¢ as follows:

(1—Mw(t) .
G Awlt) 4 =t d
w(s,w) (s2,w2) = t(s1,w1) and |wi| > 0,
w(t :
P((Slawl) ) (SZ,WZ)) = < ﬁ lf (827W2) = t(81,W1) a’nd |W1| - 07
AL ) oS 0 and [ = f] — 1.
\ [ |

Then [BE99] restricts to the case where the probability A of losing
messages is assumed to be at least 0.5 and show decidability of model
checking LT L\x formulas (i.e. LT L formulas that are insensitive to
stuttering [PW97]). Decidability of model checking is shown by prov-
ing that, under the assumption that A > 0.5, one gets a probabilistic
input enabled PLCS': a system where in any state there is probability
at least 0.5 that the size of the channel contents decreases. In fact,
for probabilistic input enabled PLCS’s, the set {(s,w) : |w| =0} is
an attractor, and decidability of model checking follows then in a
similar manner to Section 5 and Section 7.

There are, however, some problems with the definition in [BE99]
(disregarding the issue of whether it is more natural to have the
probability A applying independently to all messages in a channel, or

5 We give a simplified version of the definition, where we do not account for the fact
that several different transitions may allow reaching (s2,ws2) from (s1,w1).
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globally to its whole contents, or whether A > 0.5 is commonplace).
Their operational semantics keeps message losses apart from perfect
steps (while we amalgamate them). As a consequence the product
of an automaton A with the Markov chain M associated with some
PLCS L is not (isomorphic to) the Markov chain of some £'. In other
words, their definition does not support a result like our Lemma 7.2.
Furthermore, their definition makes it possible for an automaton
to observe losses: in their framework, it is undecidable whether the
traces of a state-labeled PLCS almost surely belong to L. for a
finitary regular language L.

8.2 Complexity Analysis

Our method for checking that a state, or a set of states, will be
reached almost surely in a PLCS £ reduces the problem to polynomially-
many reachability questions on the underlying (non-probabilistic)
LCS. In the other direction, it is easy to reduce reachability in an
LCS to probabilistic reachability in some associated PLCS: we con-
clude that the verification of qualitative probabilistic properties on
PLCS’s and the verification of reachability properties on LCS’s are
equally hard. Recall that reachability in LCS’s cannot be solved in
primitive recursive time [Sch02].

When verifying a linear-time property given by a deterministic
Muller automaton A, our method reduces the problem to reachabil-
ity problems in the product A x £. When the property is given via a
nondeterministic automaton, our method requires a determinization
step that can cause an exponential blowup. In that case, we require
time bounded by some F'(|£| x exp(].4])) for a nonprimitive recur-
sive F. An interesting question is whether one can avoid the price of
analyzing the product A x L, i.e. whether there exist methods that
only require time of the form F(|£|) x G(].A]) where G is simpler
than F' (e.g. G is elementary).

In the same direction, it would be interesting to see whether
we could apply the recent results by Couvreur et al. [CSSO03] to
our problems. For finite Markov chains, these authors show how to
verify properties described with unambiguous separated w-automata
instead of just deterministic ones, thereby saving one exponential
blowup when translating from LTL formulas. Applying their method



Verification of Probabilistic Systems with Faulty Communication 31

requires extending it from finite chains to countable chains with a
finite attractor, and further proving that it provides a reduction to
decidable questions on the underlying LCS.

8.3 Dealing With Deadlock States

PLCS’s with deadlock states raise some difficulties. First one has to
fix the definition of the Markov chain induced by the PLCS, since
Equation (6) assumes that the PLCS is deadlock-free. In order to
retain Markov chain models, we introduce a dummy sink state and
define for any state s:

1 if s is a deadlock state, or s = sink,

P(s, sink) = { .
0 otherwise.
When s is not a deadlock state and s’ is not sink, P(s, s’) is as before.

Now, if we write )y for the set of states where the channels are
empty, then Qo U {sink} is a finite attractor. We can thus reuse
our approach based on finite attractors to prove that Probabilistic
Reachability, Probabilistic Repeated Reachability and Probabilistic
Model Checking are decidable for PLCS’s with deadlock states.

For this, we only need to prove the necessary effectiveness con-
ditions: that Graph(Qo U {sink}) is constructible, etc. Everything
boils down to the following Lemma, that we prove in the rest of this
section.

Lemma 8.1. [t is decidable whether sink is reachable from a given
state u.

Reachability of sink amounts to reachability of a deadlock state
in the underlying LCS. Let us write D for the set of deadlock states.
D is usually infinite, and is not an upward-closed set of states. It is
not downward-closed either . The closure property satisfied by D is

(s,w) € D implies (s,e) € D.

Say a local state s in S is deadlockable if all transitions (s, op, s’)
in T are receiving transitions, i.e. with op the form c?m.

" This is because our definition in Section 5 groups normal steps and message losses
in a way where losses occur after normal steps.



32 P. A. Abdulla, N. Bertrand, A. Rabinovich, and Ph. Schnoebelen

Lemma 8.2. Assume u & D. Then D is reachable from w iff there
exists a deadlockable s s.t. (s,€) is reachable from u.

Proof. If (s,w) # w is reachable from u then (s, ¢) is also reachable
from wu: it is enough to lose all messages from w in the last step
of the path from u to (s,w). Furthermore, if (s,w) € D then s is
deadlockable. O

This reduces reachability of sink to a finite number of (decidable)
reachability questions, establishing Lemma 8.1.

8.4 Perspectives

There are several problems left open in this article, which we believe
are worth considering in future research.

In view of our positive results, it is natural to investigate more
elaborate models of PLCS’s, allowing the combination of nondeter-
ministic and probabilistic behavior. We refer to [BS03] for a prelim-
inary study of such extensions.

Along another direction, it is also natural to ask whether quan-
titative verification is possible for PLCS’s. A typical quantitative
problem is the following:

Computing Probability of Reachability

Instance: A PLCS £ = (S,C,M, T, \,w), a state s, and a set Q C S.
Question: What is the probability r that, starting from s, one
reaches the set of Q-states?

A related problem is to decide whether r > h for some given h.

These problems are still open. It is not even known that r is
an algebraic number, or is expressible by standard mathematical
functions.

However, the third author recently showed how to solve the fol-
lowing approximate quantitative verification problem [Rab03]:

Approximating Probability of MSO Properties for PLCS’s
Instance: A PLCS £ = (S,C,M, T, A\, w), a starting state s, an MSO
property A, and a rational 7 > 0 (called the tolerance).

Question: Compute a rational r such that the probability that the
runs of £ are accepted by A is in the interval [r — 7,7 + 7].
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