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1. Introduction -

The search for a precise mathematical charactenzzmon of what algonthm
and “computable function” should mean resulted half a c’en;ury ago in the'
discovery of three well-known equivalent approaches. Teir ghronol
order is as follows: A-definability (Church-Kleene, 1932~ 34’),,,general S
siveness (Godel-Herbrand, 1934) and Turing machines (1936)”& =

The type-free A-calculus was conceived by A. Church as a foundaﬁ'gh for

logic and mathematics, but this aim failed. In spite of this failure Church;.,
realized that a consistent part of this calculus is a paradigm for compu-,_
tation in the same way as predicate calculus is a paradigm for deduction.”

In 1934 he proclaimed his famous Thesis, which identifies the intuitive
notion of computable function with the formal notion of A-definable func-
tion, but there still was some lack of consensus about this Thesis. We learn
from Davis 1982 that it was only after Turing’s work that Go6del accepted
Church’s Thesis which had then become the Church-Turing Thesis. This is
the way the miracle occurred: the essence of a process that can be carried
out by purely mechanical means was understood and incarnated in precise
mathematical definitions.

In retrospect it is not hard to understand why, unlike the previous ap-
proaches, only Turing’s succeeded to convince once and for all that the
genuine formulation had been achieved. The point is that Turing worked
with the machine concept. Relying on this concept, he was able to give a
direct analysis of computing processes and to provide clear arguments that
all possible algorithms for computing functions can be embodied in such
machines.

In modemn jargon we can characterize Turing’s approach as computer-
(or hardware-) oriented; hence, also the expectation of significant practical
consequences. Indeed, a Turing machine is like an actual computer except

o
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that it is error-free and has access to unlimited external memory in the form
of a (potentially) infinite tape. Turing’s theorem about the existence of a
universal machine of this kind was a prophetical message which anticipated
the era of universal digital computers; it exhibits in a rudimentary form the
main ingredients of such computers. Turing’s prophecy is in no essential way
affected by the development of modern computing techniques which rely on
more sophisticated technology and design principles. It is known that Turing
himself went into computing at the National Physical Laboratory in 1945-
48 and from 1948 on at the Computing Machine Laboratory in Manchester
(England).

Let us also recall that, independently of Turing, E. Post also elaborated a
similar analysis of processes which are performable in a purely mechanical
way. However, Post’s formulation is in terms of “combinatorial systems”
and does not explicitly use the attractive machine paradigm.

Due to the logical interchangeability of hardware and software, one can
develop programming languages based on Turing machines; indeed in the
early period of computing some people developed such languages. This is
an awkward programming style, but it should not be a hindrance in those
situations in which one has to prove the existence of computable functions
with specific properties because such proofs can be produced without having
to explicitly write down the programs.

Now, returning to the earlier Church-Kleene and Gédel-Herbrand ap-
proaches, the idea occurs to characterize them (in contrast to the Turing-Post
approach) as programming or software-oriented. With respect to Godel-
Herbrand recursiveness such a characterization is quite clear. Not only
does recursiveness come closer to traditional mathematics, but as a matter
of fact some versions of recursion and recursive schemes occur in most pro-
gramming languages. Less evident is the relevance of A-definability and in
general of A-calculus for programming languages. At first sight A-definitions
look very unusual and far from traditional mathematics and modern pro-
gramming. S.C. Kleene (/979) remembers the rather chilly reception of
audiences around 1933-35 to disquisitions on A-definability. That is why
after general recursiveness had appeared he had chosen to put his work into
this format, which is more familiar to mathematicians:

In retrospect, I now feel it was too bad I did not keep active in A-definability
as well. So 1 am glad that interest in A-definability has revived, as illustrated
by Dana Scott’s 1963 communication. (Kleene /979).

Paradoxically, whatever the first impressions of A-definitions may be, the
objective truth is that the A-calculus does implicitly incorporate some of the
most important features of modern high-level programming languages. In
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this sense Church’s approach is not just a companion to Turing’s, but it also
contains its own prophetical message, namely about future programming
languages. Subsequent theoretical research and development of program-
ming confirmed this message.

It took about ten years after the mathematical birth of Turing machines
for the real computers to appear. The road from the A-calculus to the study
of existing programming languages and the design of new ones was consid-
erably longer. In many respects this is astonishing, and the following are—
some preliminary suggestions as to why it is so. :

First of all, the syntax of the A-calculus is very simple. Therefore i
is not immediately apparent how it can contain—even in an implicit and
rudimentary form—features of high level programmming languages, which
usually rely on a very elaborate syntax.

In addition, there are the intricate semantical problems of the type-
free A-calculus. In order to produce A-definitions for all the “computable”
functions, Church was forced to put aside the semantically easier typed A-
calculus. In this way self-application became inevitable and hence also the
nightmare of the set-theoretical paradoxes.

Thirdly, there is the dilemma between functional languages (and that is
really what lambda-calculus may be pretending to be) and the languages
with imperative features (like Fortran, Algol, Pascal, etc.) which actually
dominated from the very beginning of the development of high-level pro-
gramming languages.

Finally, let us mention one more restrictive factor: the A-calculus is in-
trinsically sequential, whereas parallelism features are highly desirable in a
modern language. (Sequentiality was also a primary restriction of Turing
machines).

All these circumstances suggest that the realization of Church’s vision
and the rooting of the A-calculus into the theory and practice of program-
ming might not be free of evasiveness and obscurity. Before appropriate
research was done by prominent computer scientists and logicians, it was
impossibly to guess the full impact of Church’s approach on programming.

Of course, by now these ideas and facts are well known to people who
are engaged 1n this specific area. Hopefully, putting some of these ideas and
facts in a certain order may be useful for a broader audience.

That is the main goal of this essay which is organized as follows: After
having sketched in Section 2 the syntax of the A-calculus, in Sections 3 and 4
the focus is on the languages LISP and ISWIM, which absorbed and pro-
moted ideas of the A-calculus. Landin’s ISWIM was especially instrumen-
tal for standards of forthcoming functional programming languages such as
Edinburgh ML and others; it paved the way to a consensus about what in
Section 4 is called the Church-Landin Thesis.
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Section 5 is about denotational semantics for A-calculus and through it
for programming languages in general.

The main goal of Sections 6 and 7 is to put into the right perspective
the relevance of the A-calculus for languages which allow such features (like
assignments or parallelism) that to all appearances are alien to the spirit of
the A-calculus.

The style of exposition remains eclectic throughout; more or less rigorous
definitions and claims alternate with informal speculations. I do not claim to
have painted a complete picture. On the other hand numerous quotations
from various sources have been included in order to keep the historical
flavor and to reflect personal views of investigators in the area.

2. Lambda Calculus

A-calculus amounts to A-notations plus rules of manipulating them. The
A-notation introduced by Church is very natural and efficient; it is really
a pity that it is not in general use. In daily life one has sometimes to
guess whether an expression like z¥ denotes a function or, alternatively,
a number. Even when limited to functions one may still be confused about
what function is intended. A-notations avoid such ambiguity through the
abstraction operation, that is a binding mechanism which explicitly points
out that:

1. Az.z¥ denotes the function, which for each z returns the value zV¥;
2. My.z¥ denotes the exponential function.

Hence, the respective derivative functions are Az.yz¥~! and Ay.z¥iny,
wheieas z¥ denotes a number and it does not make any sense to ask about
its derivative.

Naturally, one expects that Az.z¥ should have the same meaning as Az.z.Y,
i.e., renaming of the bounded (dummy) variable z is allowed (unlike the
renaming of the free variable y) so long as there is no “collision” with the
free variable.

Az.E represents a function with formal parameter z and body E. Ac-
cording to more common programming language syntax, one would prefer
to assign a name to this function—say f—rvia a declaration like

define f: function (z);
return E end.

The other fundamental notation is for application. Namely, (E;, E;)—a
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slight deviation from the more familiar E, (E;)—denotes the application of
the function (operator) E; to the argument (operand) E,.

Formally, the expressions (terms) of the (pure) \-calculus are introduced
by induction; at the same time one defines the set Free(E) of free variable
occurrences in E and bindings in E.

(0) A variable z is a term; z is its only free occurrence.

(I) Application. If E, F are M-terms, so is (E F) and the free occurrence and
the bindings are those in £ and in F.
(II) Abstraction. If E is a A-term and z a variable, then \z.E is a term.
Free (A\z.E) = Free (E) — {free occurrences of z in E}. The bindings in
(Az.E) contain all those of E and in addition the free occurrences of z
in E are bound by the abstractor Az.

To make A-terms more readable, save brackets as suggested by the examples:
Instead of ((E,E;)Es) write E, E; E; (applications associate to the left).
Instead of Azy.(Az,.(Az3.E)) write Az,z,z3.E (abstractors associate to the

right).

Note that only single-argument (monadic) functions are formalized in
this way. This is not an essential restriction because there is a straightfor-
ward method (currying) which reduces the use of a function f of several
arguments to the use of a related monadic function f. For example, sup-
pose we wish the binary function f to apply to z and y and to produce zv.
Then the monadic f, applied to z alone, produces the monadic exponential
function Ay.z¥, whose value is just z¥ when applied to y. In his /984 paper
J.B. Rosser comments in connection with this:

This is the way computers function. A program in a computer is a function
of a single argument. People who have not considered the matter carefully
may think, when they write a subroutine to add two numbers, that they have
produced a program that is a function of two arguments. But what happens
when the program begins to run, to produce the sum A+ B? First 4 is brought
from memory. Suppose that at that instant the computer is completely haited.
What remains in the computer is a program to be applied to any B that might
be forthcoming, to produce the sum of the given A and the forthcoming B.
It is a function of one argument, depending on the given A, to be applied to
any B, to produce the sum A + B.

A-notations are consistent with the use of higher-order functions which
allow as arguments and/or return as values other functions. As a matter of
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fact, this underlies the idea of “currying”. Using more programming jargon,
one might say that in the A-calculus programs themselves may be dealt with
as data. Such a flexibility is a direct consequence from the lack of any type
constraints. The price one has to pay for this is that self-applicable functions
are allowed as well. For example, in the expression

¢ = def dz.f(zz) (1)

z is applied to itself.

Many programming languages share this feature of the type-free A-
calculus and allow procedures which can take themselves as arguments. But
it is well known that self-application leads to contradictions, as is evident
from the following definition:

P(f)=def iof f(f) #0 then 0 else 1. (2)

According to (2) P(f) # f(f) for all functions f, hence applying P to
itself one gets P(P) # P(P).

Clearly, this points to serious semantical problems we have to confront
when trying to interpret A-terms as definitions of functions in the set-
theoretical sense (mappings from sets to sets). We shall return to this topic
in Section 5 but meanwhile let us recall the operational semantics of the
A-calculus. It relies on three operations which intuitively are expected to
preserve the meaning of terms:

1. a-reduction viz, renaming of bounded variables, as explained above. This
corresponds to the static scope discipline in programming terminology.
2. B-reduction viz evaluation by substitution (or call by name):

(Az.M)N reduces to M[z := N]

in which M(z := N| means the result of replacing each free occurrence of z
in M by N (after appropriate renaming of bound variables in order to avoid
collision of free and bound variables).

3. B-expansion—the operation inverse to g-reduction.

A red B means that A may be transformed to B by 0 or many operations
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of these sorts.

If no f-reductions are possible on B either immediately or after some
a-reductions, B is said to be in normal form and then if A red B, B is a
normal form of A.

Consider the term ¢ as in (1). ¢¢ reduces via one §-reduction to fAo9);
in this sense ¢¢ is a fixed point of the function f. The term Y =4¢s Af.¢¢
being applied to arbitrary F produces a fixed point of F, i.e.,

YF red F(YF). (3)

Y is the so-called paradoxical combinator (fixed point combinator). The A-
calculus mimics the computation of a program by reductions. Church iden-
tified the positive integers 1,2, 3, ... with A-terms (in normal form) 1, 3,3, ...
defined as follows:

Mz fz, Mz f(fz), Mz f(f(fz)),...

Now, given a closed (i.¢., without free variables) A-formula F it expresses (\-
defines) the partial function f such that, for each positive integer n, f (n)=m
or f(n) is undefined, according to whether F# red r or not. This is a correct
definition since for a given n there can be at most one m such that F7 red 7
(consequence of the Church-Rosser theorem). On the other hand, starting
from F7 the reduction process may be performed in a determinate and cal-
culable way. In this sense a A-definable function is “effectively calculable”.

Finally, in 1936 Church published his definite proposal, which due to
Kleene is well known as

Church’s Thesis: The A-definable functions are all the effectively calculable
Sfunctions.

Note: Due to the relation between recursion and fixed points, the use
of self-application is very useful in producing A-definitions for functions.
In order to mimic recursion Turing suggested the use of the fixed point
combinator to provide A-definitions that are less complicated than those
originally elaborated by Kleene.

For readability we use mixed expressions in the sequel with many ar-
gument functions and other familiar mathematical notations, though in all
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cases we could keep the standard formal syntax of A-terms.

Let us now return to the semantical difficulties caused by self-application.
A simple way to avoid them would be to use the typed A-calculus which
does not allow self-application at all. In fact we shall consider a family
of languages parametrized by {1—the set of primitive types (e.g., integers,
booleans, etc.). Moreover, we shall also parametrize with respect to C—the
set of constants of the language, abandoning in this way the commitment
to consider “pure” X-calculus. The formal definitions are as follows:

Type expressions (or simply-types):

Each element of {1 (each primitive type) is a type.

If a, 8 are types, so is o — .

Now, C = 7 C™ where C“ is the set of constants of type a. For each type o

an infinite set X of variables of type a is considered as well; X = [/ X°.

[+3
The languages L(£2,C) consists of typed terms; L*((,C) is the set of
terms of type o. Below we omit the parameters (1, C supposing them fixed:

Basis: C* ¢ L*, X* C L*
Application: w € L*~P v € L* implies (uv) € L
Abstraction: z € X*,u € L? implies A\z.u € L>—F

Binding and reductions are as in the untyped case. Clearly, L(Q},C) is a
proper part of the untyped language with constant form C. In particular no
self-application may occur in a typed term.

3. LISP

LISP was designed by J. McCarthy in the late fifties—early sixties. It is the
second (after FORTRAN) oldest programming language which is still widely
used, especially for work on artificial intelligence. The design of LISP relies
on several fresh ideas which became quite popular, e.g., computing with
symbolic expressions (rather than numbers) and their appropriate represen-
tation by list structures. However, for our consideration, those features that
are inherited from the lambda calculus, are more relevant.

1. The most striking feature is the explicit use of the LAMBDA operator
for naming functions:

To use functions as arguments, one needs a notation for functions, and it
seemed natural to use the A-notation of Church /94/. 1 didn’t understand
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the rest of the book, so I wasn’t tempted to try to implement his more gen-
eral mechanism for defining functions. Church used higher order functionals
instead of using conditional expressions. Conditional expressions are much
more readily implemented on computers. (Quotation from McCarthy in Wex-
elblat 1981, p.173-197)

2. LISP promoted the idea of treating basic operations (car, cdr,... and
ultimately even conditionals) as functions. Hence, they could be composed
and dealt with as constants of the A-calculus. Some slight deviations from
this standard were recognized in the sequel. So, as D. Park pointed out,

The LABEL notation invented by N. Rochester was logically unnecessary
since the result could be achieved using only LAMBDA—by a construction
analogous to Church’s (paradoxical) Y -operator, albeit in a more complicated
way. (Wexelblat 1981).

3. LISP also inherited “currying” from Church’s Lambda Calculus. Mc-
Carthy recognized procedures as functions of one argument; it is possible
to apply one procedure to another and to return a third one as a result.

4. The representation of LISP programs as LISP data is in full accor-
dance with the type free lambda calculus. McCarthy’s universal function
EVALUATE strongly relies on this idea.

5. The clear vision that the functional style of programming is the most
appropriate way to assure referential transparency. At first McCarthy con-
sidered it important to express programs as applicative expressions built up
from variables and constants using functions, i.e., to pursue a functional
applicative style of programs in which side effects are avoided (Pure LISP).

Let us now mention two essential points in which LISP deviated from
the A-calculus ideal.

The first one concerns the introduction of “dirty” features such as assign-
ments and goto’s. Considering that tricks with side effects may be a source
of computational efficiency, in the sequel McCarthy gave up the Pure LISP.
(Much later, for similar reasons, other languages (for example, ML) that
are generally recognized as functional languages resorted to some of these
“dirty” features.)

But the most striking deviation from the A-calculus legacy is the dynamic
scope discipline of LISP as opposed to the static scope of the A-calculus.
Thus, (up to specific LISP notations) the expression
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Az.(Ap.((Az.pz)0)(Au.(z + 2))1

would be evaluated to 2 in LISP whereas its value according to the static
scope is 3. \

That this was not a conscious decision, but rather an unfortunate over-
sight of McCarthy, is testified to in his survey (Wexelblat 1981). It is a very
instructive story, and it is worth recalling that

James R. Slagle programmed ... LISP function definition and complained
when it did not work right ... In modern terminology, lexical (static) scoping
was wanted but dynamic scoping was obtained . ..

Firstly, ... I regarded this as a bug and expressed confidence that it would
soon be fixed. Unfortunately, the devices invented to fix it were not able to
manage definitely with the problem . ..

After all, modernized and sanitized versions of LISP such as SASL
(Turner) and LIPSKIT (Henderson) abandoned this unfortunate dynamic
scope and restored the original scoping of the A-calculus.

4. ISWIM

In 1966 Peter Landin published his famous paper (Landin 1966) under the
intriguing title, “The Next 700 Programming Languages”, where he intro-
duced the language ISWIM (If you See What I Mean). In comparison with
the A-calculus the major innovation is in an additional binding mechanism
through the let and letrec constructs. These constructs significantly improve
the binding by abstraction permitting the statement of declarations (defini-
tions) in a convenient way. At the same time ISWIM was also high order:
hence functions which have other functions as arguments could be declared.
We limit ourselves here to a few examples which will hopefully illustrate this
point:

let (z=y+1)in (2> -z+1) (1)

may be considered as a notational version (“syntactical sugar”—according
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to Landin) of the standard A-expression

(Az.z? -2+ 1)(y+1). (2)

What is gained here is only a more articulate and more suggestive exhibi-
tion of the relevant subexpressions: the definition z = y + 1 with “definien-
dum” z and “definiens” y + 1, and the “main part” (i.e., the user of the
definition) z2 — z + 1.

On the other hand, letrec introduces recursive definitions and provides
a more substantial improvement: note that

letrec f = An.(if equal(n,0) then 1 else n- f(n — 1)) in f(3) (3)

is quite different from

let f = An.(if equal(n,0) then 1 else n- f(n— 1)) in f(3). (4)

In (3) the defined f binds the occurrences of f in both the definiens and
the main part f(3); hence the intended value of the whole ISWIM expression
1s3'=6

In (4) unlike (3) only the occurrence of f in f(3) is bound, whereas the
occurrence in f(n — 1) is free and hence refers to a global function supplied
by the environment (say, by an external declaration).

Usually, instead of (3) and (4) ISWIM would use the sugared forms, say,
(3') below instead of (3):

letrec f(n) = if equal(n,0) then ... (3)

The letrec construct was conceived by P. Landin as syntactical sugar for
specific A-terms which use the (paradoxical) fixed-point operator Y. For
example (3) might be desugared to (the nonrecursive declaration)

let f =Y (Af.An(if equal(n,0)...)) in f(3)
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which might be further desugared, like (1) to (2).

In general, ISWIM allows arbitrary mutual declarations and nested dec-
larations as illustrated in (5):

letrec (f(n) = (if equal(n,0) then 1 else f(n—1)+g(n-1)) and g(n) = 2n+3)
in (let f(n) = (if equal(n,0) then 1 else n- f(n —1)) in f(3)) 5

Consider the defined f in the mutual recursive declaration for f and g;
clearly by this declaration it is specified as the function An.(n+ 1)%. On the
other hand it binds the occurrence of f in n - f(n - 1); hence the value of
the whole expression will be 3- (3 +1 - 1)2 = 27.

The let and letrec constructs reflect the down-top style of definitions and
their use, and this i1s the common style in programming. In more common
programming notations instead of, say

let f(n)=n+y i f(5) (6)

one might use something like

define f : function (n);

return n+y (6')

end,

f(5).

In fact, ISWIM also allows as synonymous for let and letrec the where
and whererec formats which exhibit a top-down approach. For example, in
the simple case of (1) the “where” format looks like:

2-z+1
where 1)
z=y+1

Often, when the A-formulas of LISP programs are cumbersome and
deeply nested, the use of the “let” and “letrec” constructs provide more read-
able notations which come closer to the conventional mathematical style of
formulating and referring to definitions.

In addition to the reduction rules of the A-calculus, the operational (re-
duction) semantics of ISWIM also includes specific rules for manipulation
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with declarations. For example, in the case of a block with a simple (non-
mutual) declaration, expansions of calls are performed according to the

Expansion Rule:
letrec £ = N in M reduces to letrec z = N in M[z := N]

Note that for the nonrecursive let, this rule in fact yields a slightly im-
proved sugaring of the g-reduction of the A-calculus (compare (1) and (2)
above).

We considered above the untyped ISWIM. In order to get its typed ver-
sion ISWIM (Q1, C) we have only to extend the syntax for L(A, C) with dec-
laration clauses. For example, using I* as a shorthand for ISWIM*(Q,C)
we have:

Block with mutual recursive declarations:
Ty € X*, ..., € X%
uy €I, ... ux € I** v €% imply

letrec (z1 =uy and ... zx =ux) inv e I°.

ISWIM was originally a purely functional language, and here we consider
it only as such, although Landin later added an imperative feature—the
“program point”. ISWIM (unlike LISP) obeys the static scoping of the A-
calculus with respect to both binding mechanisms, hence renaming bounded
variables will in no way affect the meaning of an ISWIM program.

One other deviation from the A-calculus is that ISWIM evaluates “by
value”, whereas the A-calculus evaluates “by name”. For example:

(A2.6)(5/0) (7)

returns the value 6, whereas let z = 5/0 in 6 requires 5/0 to be evaluated
first and hence is not defined. This is not a dangerous deviation for two
reasons:

1. Call by name and call by value cannot produce two different values (as
the alternative scoping rules may do). The worst that can happen (see
the example (7)) is that evaluation by name produces a result, whereas
call by value is not defined.

2. Call by value can be modeled through call by name plus appropriate
primitive constants.

Later, the ISWIM innovations became widely used in all programming
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languages which developed the A-calculus paradigm.

We mention here only two such developments: The first one is Edinburgh
ML (Gordon et al. 1979), with a rich type structure and many facilities which
in particular facilitate interactive proofs of programs (hence the initials ML
for Meta Language).

The second one is LUCID (Wadge and Ashcroft / 985), conceived by its
authors as a Data Flow Language, with the intention of a parallel implemen-
tation. In fact LUCID may be desugared to ISWIM with an appropriate set
of constants. (The authors deal mainly with untyped ISWIM).

But beyond the important technical aspects of his contribution, Landin
was the first to fully grasp and promulgate what we would like to call

The Church-Landin Thesis: Programming Languages are A-calculus sweet-
ened with specific sugar.

Remarkably, from the very beginning Landin had in mind not only func-
tional languages but also imperative ones such as Algol (Landin / 965). On
one hand, he defined the so-called SECD machine, on which A-formulas
may be manipulated in the same way as common imperative programs in
real computers. On the other hand—and that was the heart of the thesis—
he had the clear vision of the A-calculus underlying both functional and
imperative languages.

5. Semantics

It is not the purpose here to advocate the importance of having formal
(mathematical) means for the specification of the semantics of program-
ming languages; clearly, relaxing the requirement of formality may lead to
inconsistencies (Knuth 71967). The need of precise formal syntax was recog-
nized much earlier, and FORTRAN and later ALGOL already established
high standards of syntax specification. The problems with semantics were
and still are considerably more difficult.

In Sections 3 and 4 semantics of A-calculus and of ISWIM was specified
by the computational behavior of symbolic manipulation (say—reductions
of the A-calculus). This sort of specifying semantics is called operational,
and it is quite different from the denotational one, which is generally ac-
cepted in mathematics and logic. In contrast to operational semantics, the
denotational meaning of a piece of syntax is an object belonging to a (hope-
fully) well-understood semantical domain. Moreover, the meaning of an
expression is defined by induction through the meanings of its subexpres-
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sion. Hence the denotational approach provides a referentially transparent
semantics which obeys the compositionality principle of the kind usual in
mathematics and logic.

Scott and Strachey (/974) took on the challenge of elaborating a deno-
tational semantics (they used the term “mathematical semantics™) for pro-
gramming languages. Scott promoted the fundamental idea that models
of the X-calculus might be an appropriate tool for providing programming
languages with formal semantics. Moreover, it was clear that the type-free
A-calculus had to be dealt with. As in general for other algebraic calculi, it is
not difficult to consider a superficial model by taking appropriate equivalent
classes of syntactical object. For the A-calculus, it would roughly amount to
factorizing the class of all A-terms with respect to convertibility; but such a
model would be of little help. The famous solution presented by Scott in
1969 was the construction of A-models based on continuous lattices. After
that Scott developed the theory of domains, as the basis for mathematical
semantics of programming languages.

For the typed A-calculus and typed ISWIM, where no self-application
may occur, models for denotational semantics are easy.

To define the semantics of L({(}, C) we need a type-frame D((1,C), that is
a family of sets D* called domains, one for each type a such that:

1. D87 consists of some total functions from D? into D".
2. The constants from C* are interpreted by some elements from D2,

An environment for a type-frame D({},C) is a mapping e : X — D which
respects types. e[di/zy,...,dkx/zk] is the environment that differs from e
only on the variables z,, ..., z, for which the values d,, ..., d, are assumed.
Env denotes the set of all environments.

Establishing a semantics for L amounts to specifying a “nice” mapping
1l 1:LxEav - D

which respects types; {[u]le is the meaning of the term u under the environ-
ment e.

We expect that these meanings are consistent with the operational se-
mantics; in particular reductions should preserve the meanings of terms.
This is indeed the case if we assume that D is a full frame, that is for each
8, ~ the domain D?—7 consists of all total functions from D? into D7. It is
very easy to prove:

Theorem: Assume D is a full frame. Then there exists a (unique) mapping
[ 1 which correctly interprets the constants from C and such that:
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0) for z € X* [z]e = e(z)
1) Application: {[uv]le = [u]e ([v]e)
2) Abstraction: Vd € D* Yz € X* [Az.ue (d) = [[u] e[d/z]

In fact, in addition to the full frame, there may be other frames for which
the theorems holds as well. All such frames are called A\-models of L((2, C).

Call A-terms u,v denotationally equivalent (notation u ~ v) iff in each
model:

[u]le = [v]e whatever the environment e may be (%)

The claims we formulate below point to fundamental properties of de-
notational semantics in general; their analogues hold for other languages as
well:

Claim 1 (Replacement Rule): Assume that u ~ v and that w, is the result of
literally replacing (without renaming of bound variables) a subterm u of wy
by v. Then wy =~ ws.

Claim 2 (Consistency of the denotational semantics with the operational
one): Assume the terms u,v are convertible (i.e., one can reduce u to v us-
ing a-reductions, p-reductions and expansions); then they are denotationally
equivalent.

Denotational semantics for ISWIM (0, C) is handled very similarly to,
though a bit more complicated than, L(f2,C). As in the case of L(Q,C)
one needs a type frame D(Q2,C), and again D?~° consists of some fotal
functions from D% into D°.

The main point is that one has to assure in each domain D(e—2)—a the
existence of a fixed-point operator A, such that for all f € D*=2 both
(Y/f) and f(Yf) are the same element in D*. It is also necessary that
the fixed-point operators be chosen consistently with the structure of the
frame. A well-known approach is to use continuous models; this amounts to
considering frames whose domains are complete partial orders (cpo’s) with
continuous functions from D* into D” as elements of D*~?. We won’t go
into detail here on this subject, but the following point should be empha-
sized. Since (according to the definition of a cpo) in each domain D® there
exists the specific element L, - the undefined element of type a - consid-
ering only fotal functions is not a restrictive requirement (roughly—mimic
a partial function by a total function which sometimes returns ).

Two ISWIM expressions E;, E, are said to be equivalent (notation; E; ~
E,) if they have the same meaning in all continuous models and for each
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environment.

As expected, the analogue of Claim 1 holds for ISWIM as well. Consis-
tency with operational semantics is manifested by a lot of important equiv-
alences. Here are some illustrations:

Expansion
(letrec = N in M) =~ (letrec x = N in M(z := NJ])

Denesting :
let 2= (let za =ug inuy) N v
let (1 =wuy and T2 = ug) in v
assuming z» is not free in v

Explicit parametrization.
(let f=wu1inv)=~let he =u[f = hz|in v[f = ha).

There are a lot of other important equivalences, concerning expansions of
recursive calls, transformations of simultaneous declarations into iterated
ones. We shall return to this topic later in Section 6. )

Unlike the typed languages where things are relatively easy, for the type-
free A-calculus, the crux is to give a consistent meaning of self-application.
Scott developed a rich theory of models of self-applicable functions for the
semantics of type free A-calculus as well as other programming languages.
This theory relies on a novel understanding of the notion of function and
application of a function to an argument because ordinary mathematical
functions are not self-applicable.

Scott’s deep and elegant theory was too overloaded with subtle mathe-
matical details to be accessible to the broad programming community. That
is why he returned to this topic over and over again, looking for a more
conventional approach.

Even prominent experts in programming used to complain on the cum-
bersome machinery of denotational specifications. In his /978 Backus esti-
mated the state of affairs as follows:

Why did the good mathematics of the Scott-Strachey approach not work? . ..
It results in a bewildering collection of productions, domains, functions and
equations that is slightly more helpful ... than the reference manual of the
language.

And here is a quotation from Scott 1982:

When I remember how much headaches I have caused to people in Computer
Science who have tried to figure out the mathematical details of the theory
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of domains I have to cringe ...

The difficulty in the presentation of the subject is in justifying the level
of abstraction in comparison with the payoff; often the effort needed for
understanding ... does not seem worth the trouble—especially if the notions
are unfamiliar or excessively general .. .

It takes some time to learn the notations and terminology and to become
comfortable with them, to gain sufficient intuition ...

However, it may be that, for the first time since Church started his pro-
gramming exercises on the A-calculus, A-programs obtained a precise and
robust model-theoretic semantics. Moreover, from now on mathematical
semantics of constructs in diverse programming languages might be speci-
fied via translations into appropriate forms of A-calculus.

6. Imperative Features

Two prominent features—assignments and goto’s—are directly inherited
from the von Neumann computer architecture. Both are completely alien
to the spirit of A-calculus and are nicknamed “dirty features” by the adepts
of pure functional programming. The goto’s were long ago recognized as
a troublesome control mechanism by the pioneers of “structured program-
ming” (Dijkstra: goto’s are harmful). Assignments are the main vehicle
through which the computer memory (or store) is altered by program execu-
tion. Due to them (even without goto’s) one can count to achieve tricky side
effects and computational efficiency. Imperative languages were intensively
developed beginning with the early FORTRAN. Notably John Backus, the
designer of FORTRAN, later joined the critics of the “dirty features™; in
his Turing lecture (1978) he called for the liberation of programming from
the von Neumann style and outlined a new functional language.

Instead of commenting on the controversy between functional and im-
perative programming we shall confine ourselves here to the following claim:
A-calculus is not solely the core of functional languages but it is also of ex-
ceptional relevance to imperative languages as well.

In order to give evidence to this claim we focus here on fully typed
algol-like languages (Pascal comes close enough to them). These languages
allow an extremely broad repertoire of program constructions: assignments,
conditionals, command sequencing, recursion, high-order procedures with
value parameters (call by value), variable parameters (call by reference) and
procedure parameters. No restrictions are assumed on the nesting of blocks
and of mutually recursive procedure declarations. Nevertheless, what we
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are going to explain is that despite the multifariousness of these features,
the “true» syntax of Algol-like languages is nothing but ISWIM(Q2,C) with
appropriately chosen parameters (2, C.

Concretely, we consider an illustrative toy language PROG, whose syn-
tax reflects familiar programming languages except for one essential point:
an explicit distinction is made between the type loc of memory locations
and the type val of storable values. (In common programming terminol-
ogy one refers implicitly to this distinction via “left” and “right” values of
expressions.)

For example in the assignment

z:=cont(y) +a

z is of type loc; on the other hand in the value expression cont(y) + a, y
is of type loc, a is of type val, and cont is intended to perform the explicit
dereferencing from locations to their value contents. Note also the difference
between the Boolean expressions

z=y cont(z) = cont(y);

the first one expresses sharing of locations, whereas the second one expresses
equality of values.

Below, after having sketched some features of PROG we proceed to the
description of a translation Tr from PROG into ISWIM. This translation is
the first step in a two-step process of formalizing the semantics of programs
m in PROG. The second one amounts to assign meanings to Tr(n) in the
standard ISWIM way. Programs simply inherit their semantics directly from
the ISWIM terms in which they translate. Moreover, the abstract syntax,
viz. parse tree of Tr(w) is actually identical to that of . The translation
serves mainly to make explicit the binding conventions and the implicit
type coercions of PROG. Having in mind these circumstances we argue that
IWSIM (2, C) provides the genuine syntax of PROG—a worthy alternative
for the ALGOL-jargon which came down through history.

Types of PROG. As primitive types consider
(Y = def{loc, val, bool, stat}

where stat is intended to be the type of statements and parameterless pro-
cedures.
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Blocks and bindings in PROG. Procedures of all higher finite types derived
from 2 may be declared, passed as parameters, and returned as values.

Procedure identifiers are bound in PROG via declarations occurring at
the head of a procedure block, e.g.,

begin
proc Py(formall, formal2) <= Bodyl,
proc Py(formal) <= Body2 end; ™)
Blockbody

end

Blocks with variable declaration have the format
begin wvarz;St end

where z is of type loc and St is a statement, i.e., a phrase of type stat.

The syntax preserving translations Tr. We choose the parameters (1,C of
ISWIM as follows:

1. © - coincides with the set of primitive types in PROG.

2. C consists of two parts:
Y. - the signature of PROG, i.e., the set of function symbols and predicate
symbols it uses (say, plus, equal, less-- )
A = {cont,seq,var,assign, - -} contains symbols that correspond to the
program constructors.

Procedure blocks are translated, using letrec. For example the block ()
above is translated into

letrec Py(formall, formal2)Tr(Bodyl) and
P,(formal) = Tr(Body2) in Tr(Blockbody)

By translating procedure declarations in this way it follows from the defini-
tion of ISWIM that static scope applies.
( Blocks with variable declarations are handled with A-abstraction and
with constant var of type (loc — stat) — stat:

Tr(begin var z; St) = var(Az.Tr(St)).

Hence, the binding effect of var z in the block is reflected in the binding
effect of Az on Tr(z).

Other expressions and statements are translated directly by introducing
suitable constants from A, but no binding operators.
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Examples: Consider the value expression cont(y) +a. The intended meaning
of cont(y) is not a value, but a function from stores to values. (In Algol
Jargon such functions are called thunks.) Below we use valezp as a notation
for its type (a shorthand for (loc — val) — val). But then we expect also the
coercion to valezp for the type of a. Hence

Tr(cont(y) + a) = plus(cont(y), Ka)
with cont of type loc — valezp

K of type val — valezp

plus of type (valezp,valerp) — valexp.

The translation of assignments is straightforward, e.g.,
Tr(z := cont(y) + a) = assign(z, Tr(cont(y) + a))

with assign of type (loc, valezp — stat).

In this way the syntax preserving translation Tr may be accomplished
and hence most of the semantics of PROG. All that remains is the appropri-
ate choice of domains and checking that the constants in A are continuous
functions and also that they are consistent with the underlying intuition.

All this is almost a routine exercise with the significant exception of var.
Here is where one of the crucial points of the whole enterprise concerning
the connection of local variables with global procedures and the semantics
of local storage (Trakhtenbrot et al. /984) is hidden.

What are the advantages of presenting PROG in the ISWIM format? ,

An immediate benefit is that it reveals the fundamental difference be-
tween the binding mechanisms in blocks with variable declarations and in
blocks with procedure declarations. This is made explicit by their contrast-
ing translations into ISWIM; the first are translated using A-abstraction and
the constant var, whereas the second are translated using the letrec bindin
mechanism.

A principal consequence of the syntax preserving translation is that the
basic properties of the procedural mechanism-in programs can be recognized
as direct consequences of more elementary and well-understood properties
of ISWIM. Thus many familiar and relatively simple equivalent transfor-
mations of ISWIM correspond to significant transformations of programs.
The soundness of these transformations is therefore independent of even
the meaning of the primitive constructs of the programming language (i.e.,
ultimately—of the interpretation of the constants in A). This observation
brings us to the clear distinction between two levels of abstraction for algol-
like programs: on one hand there are the program schemes with uninter-
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preted signature £ but still relying on the meaning of program constructs;
they are just the objects studied in classical comparative schematology. On
the other hand there are the A-schemes (following the terminology of Damm
and Fehr) which abstract from both £ and A.

7. Parallelism Features

The M-calculus is generally recognized as a language which specifies sequen-
tial (or serial) computations. In modern programming language design this
feature had been deemed too restrictive; as a remedy various facilities of
parallelism were suggested. Remarkably, the A-calculus shares this drawback
with the Turing approach to computability. To preserve its universality the
generalized Turing algorithm needs to be given some kind of parallelism.
Shepherdson (this volume) deals with this issue; the following two illumi-
nating remarks are quoted from there:

{1] Certainly what Turing actually concentrated on in his paper—written be-
fore the existence of electric computers—was human calculation. And ...
Turing assumed that the computation was serial, proceeding as a sequence of
elementary steps, whereas a machine may do several steps simultaneously.

(2] Clearly, if one wants to include all conceivable machines one must allow
parallel operation. In the case usually considered [my italics—B.T.] of com-
putation over total structures, i.e., ones whose functions and relations are
defined for all arguments, parallel procedures are no more powerful than se-
rial ones, for one oan obviously serialize a parallel procedure by subdividing
the time scale. This is no longer true if there are partial functions, e.g., the
function f defined by

f(z) = z, if f1(z) is defined or f3(z) is defined
= undefined otherwise,

obviously cannot be computed by any serial procedure because it might
choose the wrong one of fy, f2 to evaluate first. And there is no bound on
the number of processing units which may need to be simultaneously active
as is shown by the example

f(z) = z ifany of f1(z) or f1(f2(z)) or f1(f2(f2(z))) or ... ad inf, is defined.

The remark about serializing parallel procedures points out a possible
source of confusion arising when one tries to formalize the notion of se-
quential function and to contrast it with the notion of parallel function.
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This distinction makes sense when the domain and the range of the func-
tion are appropriately structured and do not reduce to (what Shepherdson
refers to as being) a “total structure”.

Church and von Neumann, independently of each other, formulated and
investigated a model of growing automata with cells working concurrently
and in a synchronized way. But the computations performed by Church-
Neumann automata can be serialized just for “total structure” reasons.
Therefore this model does not compute any parallel functions, despite the
explicit exhibition of an unbounded number of processing units which are
simultaneously active.

On the other hand, recall that in semantical models of ISWIM whose
domains have a cpo structure there occur de facto partial mappings, albeit
disguised as total functions. Hence, one can expect the distinction between
sequential and parallel functions to make sense. A typical example is the
parallel OR, which unlike the sequential one, returns the value true when
one of its arguments is true, even if the other one is L (undefined). OR
behaves essentially as the function f(z) in Shepberdson’s example. Similarly
one can contrast the parallel and the sequential versions of the conditional
“if...then. .. else”.

Precise definitions of the notion “sequential function” (and by negation
of the notion “parallel function”) for different well-structured domains were
formulated and investigated in Kahn and Plotkin /978, Plotkin 71977, and
Sazonov 1976. In general these definitions are consistent with each other and
support the hope that indeed they capture the essence of the phenomenon.

Now returning to the A-calculus as a programming language, the ques-
tions arise: (i) in what precise sense is it sequential (serial)? and (ii) what
might be the ways to enrich it with parallelism?

As to the first question, one of the possible explanations is the follow-
ing: Assume that in a model of ISWIM (2, C) all constants from C are
interpreted as sequential functions; then each function definable in ISWIM
(Q, C) is also sequential. In other words this phenomenon may be explained
as follows: application (as a binary mapping) and fixed points operators (as
unary mappings) are sequential functions.

One way of enriching ISWIM with parallelism might be to impose on
some of the constants in C specific interpretations requiring them to be par-
allel functions (say, parallel conditionals). This approach is reminiscent of
the one used earlier in Section 6 to enrich ISWIM with imperative features;
it was realized by Plotkin /977 and Sazonov 1976, where the comparative
power at parallel functions (constructs) was also analyzed.

As an alternative attractive approach it would be nice to incorporate
concurrent computations directly into the calculus. Milner 71984 and Hoare
1985 created special calculi for concurrent computation, conducted by com-
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munication among independent agents: CCS (Milner) and CSP (Hoare).
This trend is developing very successfully, both in theory and in applica-
tions to programming and communication. Unfortunately, its relationship
to the A-calculus and to the notion of parallel function as explained above
is not clear.

In his 71984 Milner testifies:

Sequential computation has a well-established (model) theory, due to the A-
calculus, which existed long before any notion of implementing a program-
ming language. The A-calculus was (and is) a paradigm for evaluation, in
the same way that the predicate calculus is a paradigm for deduction. More
recently and largely due to Dana Scott, the model theory of the A-calculus
has grown and has been barmonized with the evaluation theory.

CCS is an attempt to provide an analogous paradigm for concurrent com-
putation, conducted by communication among independent agents. It arose
after several unsuccessful attempts by the author to find a satisfactory gener-
alization of the A-calculus, to admit concurrent computation.

The relationship between a calculus for communication and the lambda
calculus is far from clear.

The notion of higher-order function which fit so well with the A-calculus,
seems to find no obvious generalization in the setting of concurrent commu-
nicating systems.

8. Concluding Remarks

The previous sections hopefully gave evidence to the claim that in many
essential aspects high-level programming languages are inherited from the
A-calculus. This claim was referred to as the Church-Landin Thesis.

Dealing with lambda definitions for numerical functions, Church pur
sued the sole object of giving a precise characterization of computability
This was before the existence of computers and programming languages
Certainly, it would be an anachronism to discern in it direct and explicit in:
dications on the future development of high-level programming languages
All this was realized only later, especially due to Landin and Scott’s inves:.
tigations. '

Let us shortly recall the main features of the A-calculus and its ISWIM
extension, considered as functional programming languages:

1. Abstraction as a fundamental binding mechanism, to which other bind
ings may be adequately reduced.

2. Declaration mechanism via the letrec construct (ISWIM)

3. Static scoping rule for bindings; hence bound variables play the role o
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place holders and may be renamed.

4. Call by name (by substitution) as an evaluation rule. Call by value can
be mimicked.

5. Clear distinction between the flexible type-free language and the more
restrictive, but more amenable, typed language.

6. Currying, as a way to deal only with one-argument operators.

And, in addition to these syntactical features,

7. An illuminating denotational semantics, which serves as a robust guide
in reasoning about programs.

On a high schematological level even imperative and/or parallel pro-
gramming languages behave as the A-calculus and may inherit most of the
features listed above.

Less clear is the relation between the A-calculus and the calculi for com-
munications that were developed to support parallel programming.

But actually the post-ISWIM development of the A-calculus was and still
is impetuous, and so is its impact on programming language design. This
comes to light basically through the elaboration of more developed type
structure and type discipline—an area which is beyond the scope of this
essay. Reynolds 7985 and Burstall and Lampson 1984 give a good idea of
the activities in the area. The following illustrations are borrowed from
these papers:

(i) Burstall and Lampson designed PEBBLE—a core language to sup-
port the writing of large programs in a modular way, which takes advantage
of type checking. In order to achieve the goal of “programming in large”
designers usually invent various features and sometimes make ad hoc de-
cisions. As to PEBBLE, “it provides a precise model for those features,
being a functional language based upon the A-calculus with a peculiar type
structure in which types are values. It is addressed to the problems of data
types, abstract data types and modules.”

(1) Reynolds 1984 discusses, among other things, the polymorphic -
calculus which was defined independently by Girard and Reynolds. Un-
like the common “first-order A-calculus” the polymorphic one (called also
second-order A-calculus) allows the definition of polymorphic functions by
abstraction on type variables. For example, in the second order lambda-
term

AaAfo™e Az f(fz) (%)

the abstraction A « is on the type variable a, whereas A f*~2 and Az ab-
stract on “common” variables f and z of types o — o and o respectively.
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The term (+) specifies the polymorphic “doubling” function that can be ap-
plied to any type (say integer) to obtain a doubling function for that type.
Certain forms of polymorphism are allowed in some widely used pro-
gramming languages (e.g., ADA). But the polymorphic A-calculus suggests a
novel and powerful programming style with the following peculiarities:

1. all programs terminate;
2. a wide spectrum of data (integers, booleans, lists, ...) are represented as
polymorphic functions.

In fact (2) is inspired by the way in which Church encoded natural num-
bers, truth values, ... in his A-definitions. For example the term (*) is noth-
ing but a polymorphic variant of Church’s untyped code for the number
two.

And again we are faced with a wonderful anticipation: a seemingly ad
hoc technicality in Church’s A-definitions is reincarnated after half a century
in a novel approach to data representation.
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