Final Exam - Program Verification

Alexander Rabinovich

April 17, 2008

Please either print or write VERY CLEARLY. Submit a pdf file by e-mail on April 20. (A handwritten version can be scanned). You can use any literature. However I would like to emphasize that the exam should be made **INDIVIDU-ALLY and NOT in groups!!!**

Grading: Exercises 1-5 are 20 point each.

Exercise 1 $G = (V_1, V_2, E)$ is a simple graph game of size n if

- 1. V_i are positions of player *i*. They have satisfy $V_1 \cap V_2 = \emptyset$, $V_1 \cup V_2 \subseteq \{1, 2, ..., n\}$. $V := V_1 \cup V_2$ is the set of all positions.
- 2. $E \subseteq V \times V$ is the set of all possible moves.
- *3.* In graph-theoretic terms, V is the set of nodes, and E the set of edges of graph G. They have to satisfy in addition that at least one edge is leaving each node.

Winning conditions: The winner of a play $v_1 \rightarrow v_2 \rightarrow \ldots v_i \rightarrow v_{i+1} \rightarrow \cdots$ is the player owning the least node which is visited infinitely often in the play. Show

- 1. In a simple graph game one of the player has a memoryless winning strategy.
- 2. $\sigma: V_1 \to V$ is a memoryless strategy of the first player iff in the following graph G_{σ} the least node in every cycle is owned by the first player.

The nodes of $G_{\sigma} := V_1 \cup V_2$. The edges of G_{σ} :

- for $v \in V_2$, there is an edge from v to u in G_{σ} iff there is an edge from v to u in G.
- for $v \in V_1$. there is an edge from v to u iff $u = \sigma(v)$.

Exercise 2 Show that there is a weak Muller game such that for each node v in the first player's winning region, Player I has a memoryless strategy σ_v which is winning for the first player for the plays which starts from v, however, Player I has no uniform memoryless winning strategy. (A strategy is uniform winning strategy for Player I if it is a winning strategy for every node of his winning region.)

Exercise 3 For a string (or ω -string) s and an alphabet Σ the string $s \lfloor \Sigma$ is obtained from s by deleting all letters not in Σ . Let L_1 and L_2 be ω languages over alphabets Σ_1 and Σ_2 . The ω -language $L_1 \mid L_2$ is defined as follows: $s \in L_1 \mid L_2$ iff $s \lfloor \Sigma_1 \in L_1$ and $s \lfloor \Sigma_2 \in L_2$. Show that if L_1 and L_2 are ω -regular languages then $L_1 \mid L_2$ is ω -regular.

Exercise 4 For a natural number k, let $\omega \times k$ be a linear order defined as follows:

- 1. Domain: The set of pairs (i, n) where i < k and n is a natural number.
- 2. The interpretation of $\langle : (i,n) \rangle \langle (j.m) \rangle$ iff either $i \langle j \rangle$ or $(i = j \rangle$ and $n \langle m \rangle$.

Show that for every k there is an algorithm that for every MLO sentence φ decides whether φ is satisfiable in $\omega \times k$.

Hint: You can use that the monadic theory of the full binary tree is decidable.

Exercise 5 Let K be a Kripke structure, b a node of K and φ be a formula in TL(Until). Show that if K has an ω -path from b which satisfies φ then K has a quasi-periodic ω -path from b with the period bounded by $l \times u \times 2^{|\varphi|}$, which satisfies φ , where l is the length of the longest simple path from b, u is the number of occurrences of Until in φ , and $|\varphi|$ is twice the number of subformula of φ . **Note;** $a_1a_2...a_i...$ is quasi-periodic with a period l if there is N such that $a_n = a_{n+l}$ for all n > N.

GOOD LUCK